
•Writestoredproceduresandfunctions
•Trapexceptionsanderrors
•Diagnoseandimproveperformance
•IntegratePL/SQLwithwebapplications
•DebugandUnit-testyourcode
•andmore!

PL/SQLisanimportant languageto learn.Itopensthedoortocentralizing
businesslogicinthedatabase.ItisthevenueinwhichmanyofOracle’snew
estfeaturesareexposed.Itisthe“rock”underlyingthewildlysuccessfulOracle

prosetogettothepoint.Webeginwiththepoint,whichisthecode.Openthe
book.Readthecode.Copy.Adapt.It’sthatsimple.

THE EXPERT’S VOICE® IN ORACLE

Josh Juneau and Matt Arena

Quick and reliable solutions for developers

and database administrators

Oracle PL/SQL
Recipes
A Problem-Solution Approach

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Oracle and PL/SQL

Recipes
A Problem-Solution Approach

Josh Juneau

Matt Arena

www.allitebooks.com

http://www.allitebooks.org

Oracle and PL/SQL Recipes: A Problem-Solution Approach

Copyright © 2010 by Josh Juneau and Matt Arena

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3207-0

ISBN-13 (electronic): 978-1-4302-3208-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Development Editor: Jonathan Gennick
Technical Reviewer: Bob Bryla
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Kim Wimpsett
Compositor: Bytheway Publishing Services
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org

 CONTENTS AT A GLANCE

iii

 Contents at a Glance

 About the Authors.. xxxiv

 About the Technical Reviewer .. xxxv

 Acknowledgments ... xxxvi

 Introduction ... xxxviii

 Chapter 1: PL/SQL Fundamentals ...1

 Chapter 2: Essential SQL...15

 Chapter 3: Looping and Logic ...43

 Chapter 4: Functions, Packages, and Procedures ...63

 Chapter 5: Triggers ...93

 Chapter 6: Type Conversion..119

 Chapter 7: Numbers, Strings, and Dates ..133

 Chapter 8: Dynamic SQL ...155

 Chapter 9: Exceptions...187

 Chapter 10: PL/SQL Collections and Records ...215

 Chapter 11: Automating Routine Tasks ..233

 Chapter 12: Oracle SQL Developer ..247

 Chapter 13: Analyzing and Improving Performance...281

 Chapter 14: Using PL/SQL on the Web ..291

 Chapter 15: Java in the Database...319

 Chapter 16: Accessing PL/SQL from JDBC, HTTP, Groovy, and Jython...............345

 Chapter 17: Unit Testing With utPLSQL...361

 Index ...391

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

iv

Contents

 About the Authors.. xxxiv

 About the Technical Reviewer .. xxxv

 Acknowledgments ... xxxvi

 Introduction ... xxxviii

 Chapter 1: PL/SQL Fundamentals ...1

1-1. Creating a Block of Code..1

Problem .. 1

Solution .. 1

How It Works .. 2

1-2. Executing a Block of Code in SQL*Plus ..2

Problem .. 2

Solution .. 2

How It Works .. 2

1-3. Storing Code in a Script ...3

Problem .. 3

Solution .. 3

How It Works .. 4

1-4. Executing a Stored Script...4

Problem .. 4

Solution .. 4

How It Works .. 5

1-5. Accepting User Input from the Keyboard ...5

Problem .. 5

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

v

Solution .. 5

How It Works .. 5

1-6. Displaying Results in SQL*Plus ..7

Problem .. 7

Solution .. 7

How It Works .. 8

1-7. Commenting Your Code..8

Problem .. 8

Solution .. 8

How It Works .. 9

1-8. Referencing a Block of Code ..9

Problem .. 9

Solution .. 9

How It Works .. 10

1-9. Referring to Variables from Nested Blocks ..10

Problem .. 10

Solution .. 10

How It Works .. 11

1-10. Ignoring Substitution Variables ..12

Problem .. 12

Solution #1 ... 12

Solution #2 ... 12

How It Works .. 12

1-11. Changing the Substitution Variable Character ...13

Problem .. 13

Solution .. 13

How It Works .. 14

1-12. Creating a Variable to Match a Database Column Type ...14

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

vi

Problem .. 14

Solution .. 14

How It Works .. 14

 Chapter 2: Essential SQL...15

2-1. Retrieving a Single Row from the Database...15

Problem .. 15

Solution #1 ... 15

Solution #2 ... 16

How It Works .. 17

2-2. Qualifying Column and Variable Names ...18

Problem .. 18

Solution .. 19

How It Works .. 19

2-3. Declaring Variable Types That Match Column Types ...20

Problem .. 20

Solution .. 20

How It Works .. 21

2-4. Returning Queried Data into a PL/SQL Record ...21

Problem .. 21

Solution .. 21

How It Works .. 22

2-5. Creating Your Own Records to Receive Query Results ..22

Problem .. 22

Solution .. 22

How It Works .. 23

2-6. Looping Through Rows from a Query...24

Problem .. 24

Solution #1 ... 24

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

vii

Solution #2 ... 24

How It Works .. 25

2-7. Obtaining Environment and Session Information ...25

Problem .. 25

Solution .. 25

How It Works .. 26

2-8. Formatting Query Results...29

Problem .. 29

Solution .. 29

How It Works .. 30

2-9. Updating Rows Returned by a Query..31

Problem .. 31

Solution .. 31

How It Works .. 32

2-10. Updating Rows Returned by a Cursor ..33

Problem .. 33

Solution .. 33

How It Works .. 33

2-11. Deleting Rows Returned by a Cursor ...34

Problem .. 34

Solution .. 34

How It Works .. 35

2-12. Performing a Transaction...35

Problem .. 35

Solution .. 35

How It Works .. 36

2-13. Ensuring That Multiple Queries “See” the Same Data ...37

Problem .. 37

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

viii

Solution .. 37

How It Works .. 37

2-14. Executing One Transaction from Within Another ...38

Problem .. 38

Solution .. 38

How It Works .. 39

2-15. Finding and Removing Duplicate Table Rows ..40

Problem .. 40

Solution .. 40

How It Works .. 41

 Chapter 3: Looping and Logic ...43

3-1. Choosing When to Execute Code..43

Problem .. 43

Solution .. 43

How It Works .. 43

3-2. Choosing Between Two Mutually Exclusive Conditions ...44

Problem .. 44

Solution .. 44

How It Works .. 45

3-3. Evaluating Multiple Mutually Exclusive Conditions ..45

Problem .. 45

Solution #1 ... 45

Solution #2 ... 46

How It Works .. 47

3-4. Driving from an Expression Having Multiple Outcomes ...48

Problem .. 48

Solution .. 48

How It Works .. 49

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

ix

3-5. Looping Until a Specified Condition Is Met...49

Problem .. 49

Solution .. 50

How It Works .. 50

3-6. Iterating Cursor Results Until All Rows Have Been Returned...................................51

Problem .. 51

Solution .. 51

How It Works .. 52

3-7. Iterating Until a Condition Evaluates to FALSE ...52

Problem .. 52

Solution .. 52

How It Works .. 53

3-8. Bypassing the Current Loop Iteration...53

Problem .. 53

Solution .. 53

How It Works .. 54

3-9. Iterating a Fixed Number of Times...55

Problem .. 55

Solution .. 55

How It Works .. 55

3-10. Iterating Backward Through a Range...56

Problem .. 56

Solution .. 56

How It Works .. 56

3-11. Iterating in Increments Other Than One ...57

Problem .. 57

Solution .. 57

How It Works .. 57

 CONTENTS

x

3-12. Stepping Through a Loop Based on Odd-Numbered Increments58

Problem . .. 58

Solution . .. 58

How It Works . .. 58

3-13. Exiting an Outer Loop Prematurely. ..59

Problem . .. 59

Solution . .. 59

How It Works . .. 59

3-14. Jumping to a Designated Location in Code. ...60

Problem . .. 60

Solution . .. 60

How It Works . .. 61

 Chapter 4: Functions, Packages, and Procedures . ..63

4-1. Creating a Stored Function. ..63

Problem . .. 63

Solution . .. 64

How It Works . .. 65

4-2. Executing a Stored Function from a Query. ..67

Problem . .. 67

Solution . .. 67

How It Works . .. 67

4-3. Optimizing a Function That Will Always Return the Same Result for a

 Given Input...68

Problem . .. 68

Solution . .. 68

How It Works . .. 69

4-4. Creating a Stored Procedure69

Problem . .. 69

Solution . .. 69

 CONTENTS

xi

How It Works .. 70

4-5. Executing a Stored Procedure..71

Problem .. 71

Solution .. 71

How It Works .. 72

4-6. Creating Functions Within a Procedure or Code Block...73

Problem .. 73

Solution .. 73

How It Works .. 74

4-7. Passing Parameters by Name ..74

Problem .. 74

Solution .. 74

How It Works .. 75

4-8. Setting Default Parameter Values ..75

Problem .. 75

Solution .. 75

How It Works .. 76

4-9. Collecting Related Routines into a Single Unit ...76

Problem .. 76

Solution .. 76

How It Works .. 78

4-10. Writing Initialization Code for a Package ...79

Problem .. 79

Solution .. 79

How It Works .. 80

4-11. Granting the Ability to Create and Execute Stored Programs.................................80

Problem .. 80

Solution .. 81

 CONTENTS

xii

How It Works .. 81

4-12. Executing Packaged Procedures and Functions ..81

Problem .. 81

Solution .. 81

How It Works .. 81

4-13. Creating a Public Name for a Stored Program ...82

Problem .. 82

Solution .. 82

How It Works .. 83

4-14. Executing Package Programs in Sequence..83

Problem .. 83

Solution .. 84

How It Works .. 85

4-15. Implementing a Failure Flag...85

Problem .. 85

Solution .. 85

How It Works .. 87

4-16. Forcing Data Access to Go Through Packages...87

Problem .. 87

Solution .. 87

How It Works .. 88

4-17. Executing Stored Code Under Your Own Privilege Set ...88

Problem .. 88

Solution .. 88

How It Works .. 89

4-18. Accepting Multiple Parameter Sets in One Function..89

Problem .. 89

Solution .. 89

 CONTENTS

xiii

How It Works .. 90

4-19. Listing the Functions, Procedures, and Packages in a Schema.............................90

Problem .. 90

Solution .. 90

How It Works .. 91

4-20. Viewing Source Code for Stored Programs ..91

Problem .. 91

Solution .. 91

How It Works .. 92

 Chapter 5: Triggers ...93

5-1. Automatically Generating Column Values ..93

Problem .. 93

Solution .. 93

How It Works .. 94

5-2. Keeping Related Values in Sync...95

Problem .. 95

Solution .. 95

How It Works .. 96

5-3. Responding to an Update of a Specific Table Column ...97

Problem .. 97

Solution .. 97

How It Works .. 97

5-4. Making a View Updatable...98

Problem .. 98

Solution .. 98

How It Works .. 100

5-5. Altering the Functionality of Applications...101

Problem .. 101

 CONTENTS

xiv

Solution .. 101

How It Works .. 102

5-6. Validating Input Data ..103

Problem .. 103

Solution .. 103

How It Works .. 104

5-7. Scrubbing Input Data..104

Problem .. 104

Solution .. 104

How It Works .. 104

5-8. Replacing a Column’s Value...105

Problem .. 105

Solution .. 105

How It Works .. 106

5-9. Triggering on a System Event ..107

Problem .. 107

Solution .. 107

How It Works .. 108

5-10. Triggering on a Schema-Related Event..109

Problem .. 109

Solution .. 110

How It Works .. 110

5-11. Firing Two Triggers on the Same Event ...111

Problem .. 111

Solution .. 111

How It Works .. 112

5-12. Creating a Trigger That Fires on Multiple Events ...113

Problem .. 113

 CONTENTS

xv

Solution .. 113

How It Works .. 114

5-13. Creating a Trigger in a Disabled State ...115

Problem .. 115

Solution .. 116

How It Works .. 116

 Chapter 6: Type Conversion ..119

6-1. Converting a String to a Number..119

Problem .. 119

Solution .. 119

How It Works .. 120

6-2. Converting a String to a Date ...121

Problem .. 121

Solution .. 121

How It Works .. 121

6-3. Converting a Number to a String..123

Problem .. 123

Solution .. 123

How It Works .. 123

6-4. Converting a Date to a String ...124

Problem .. 124

Solution .. 124

How It Works .. 125

6-5. Converting Strings to Timestamps ...127

Problem .. 127

Solution .. 127

How It Works .. 128

6-6. Writing ANSI-Compliant Conversions ...129

 CONTENTS

xvi

Problem .. 129

Solution .. 129

How It Works .. 130

6-7. Implicitly Converting Between PLS_INTEGER and NUMBER131

Problem .. 131

Solution .. 131

How It Works .. 131

 Chapter 7: Numbers, Strings, and Dates...133

7-1. Concatenating Strings..133

Problem .. 133

Solution .. 133

How It Works .. 134

7-2. Adding Some Number of Days to a Date ..134

Problem .. 134

Solution .. 134

How It Works .. 134

7-3. Adding a Number of Months to a Date ...135

Problem .. 135

Solution .. 135

How It Works .. 136

7-4. Adding Years to a Date...137

Problem .. 137

Solution .. 137

How It Works .. 137

7-5. Determining the Interval Between Two Dates..138

Problem .. 138

Solution .. 139

How It Works .. 139

 CONTENTS

xvii

7-6. Adding Hours, Minutes, Seconds, or Days to a Given Date140

Problem .. 140

Solution .. 140

How It Works .. 141

7-7. Returning the First Day of a Given Month ..142

Problem .. 142

Solution .. 142

How It Works .. 143

7-8. Returning the Last Day of a Given Month...143

Problem .. 143

Solution .. 144

How It Works .. 144

7-9. Rounding a Number ...144

Problem .. 144

Solution .. 144

How It Works .. 145

7-10. Rounding a Datetime Value ..145

Problem .. 145

Solution .. 145

How It Works .. 145

7-11. Tracking Time to a Millisecond ..146

Problem .. 146

Solution .. 146

How It Works .. 147

7-12. Associating a Time Zone with a Date and Time ...147

Problem .. 147

Solution .. 147

How It Works .. 148

 CONTENTS

xviii

7-13. Finding a Pattern Within a String ...148

Problem .. 148

Solution .. 148

How It Works .. 149

7-14. Determining the Position of a Pattern Within a String..150

Problem .. 150

Solution .. 150

How It Works .. 151

7-15. Finding and Replacing Text Within a String ...151

Problem .. 151

Solution .. 151

How It Works .. 152

 Chapter 8: Dynamic SQL ...155

8-1. Executing a Single Row Query That Is Unknown at Compile Time.........................155

Problem .. 155

Solution #1 ... 155

Solution #2 ... 156

How It Works #1 ... 158

How It Works #2 ... 158

8-2. Executing a Multiple Row Query That Is Unknown at Compile Time......................159

Problem .. 159

Solution #1 ... 159

Solution #2 ... 160

How It Works .. 161

8-3. Writing a Dynamic INSERT Statement..161

Problem .. 161

Solution .. 161

Solution #2 ... 163

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

xix

How It Works .. 164

8-4. Writing a Dynamic Update Statement ..165

Problem .. 165

Solution .. 165

How It Works .. 168

8-5. Writing a Dynamic Delete Statement ...169

Problem .. 169

Solution .. 169

How It Works .. 170

8-6. Returning Data from a Dynamic Query into a Record ..170

Problem .. 170

Solution .. 170

How It Works .. 171

8-7. Executing a Dynamic Block of PL/SQL ...172

Problem .. 172

Solution #1 ... 172

Solution #2 ... 173

How It Works .. 173

8-8. Creating a Table at Runtime...174

Problem .. 174

Solution .. 174

How It Works .. 174

8-9. Altering a Table at Runtime..175

Problem .. 175

Solution .. 175

How It Works .. 175

8-10. Finding All Tables That Include a Specific Column Value.....................................176

Problem .. 176

 CONTENTS

xx

Solution . .. 176

How It Works . .. 178

8-11 Storing Dynamic SQL in Large Objects. ...179

Problem . .. 179

Solution #1 180

Solution #2 180

How It Works . .. 180

8-12. Passing NULL Values to Dynamic SQL. ...181

Problem . .. 181

Solution . .. 181

How It Works . .. 182

8-13. Switching Between DBMS_SQL and Native Dynamic SQL.182

Problem . .. 182

Solution . .. 182

How It Works . .. 184

8-14. Guarding Against SQL Injection Attacks. ..185

Problem . .. 185

Solution . .. 185

How It Works . .. 186

 Chapter 9: Exceptions . ..187

9-1. Trapping an Exception..187

Problem . .. 187

Solution . .. 187

How It Works . .. 189

9-2. Catching Unknown Exceptions. ..192

Problem . .. 192

Solution . .. 192

How It Works . .. 194

 CONTENTS

xxi

9-3. Creating and Raising Named Programmer-Defined Exceptions.............................194

Problem .. 194

Solution .. 195

How It Works .. 196

9-4. Determining Which Error Occurred Inside the OTHERS Handler197

Problem .. 197

Solution .. 197

How It Works .. 198

9-5. Raising User-Defined Exceptions Without an Exception Handler...........................200

Problem .. 200

Solution .. 200

How It Works .. 201

9-6. Redirecting Control After an Exception Is Raised...202

Problem .. 202

Solution .. 203

How It Works .. 204

9-7. Raising Exceptions and Continuing Processing ...204

Problem .. 204

Solution .. 204

How It Works .. 205

9-8. Associating Error Numbers with Exceptions That Have No Name206

Problem .. 206

Solution .. 206

How It Works .. 206

9-9. Tracing an Exception to Its Origin ..207

Problem .. 207

Solution .. 207

How It Works .. 210

 CONTENTS

xxii

9-10. Displaying PL/SQL Compiler Warnings...211

Problem .. 211

Solution .. 211

How It Works .. 212

 Chapter 10: PL/SQL Collections and Records ...215

10-1. Creating and Accessing a VARRAY...215

Problem .. 215

Solution .. 215

How It Works .. 216

10-2. Creating and Accessing an Indexed Table ...216

Problem .. 216

Solution .. 216

How It Works .. 217

10-3. Creating Simple Records..217

Problem .. 217

Solution .. 217

How It Works .. 217

10-4. Creating and Accessing Record Collections...218

Problem .. 218

Solution .. 218

How It Works .. 218

10-5. Creating and Accessing Hash Array Collections...219

Problem .. 219

Solution .. 219

How It Works .. 220

10-6. Creating and Accessing Complex Collections ..220

Problem .. 220

Solution .. 220

 CONTENTS

xxiii

How It Works .. 222

10-7. Passing a Collection As a Parameter..223

Problem .. 223

Solution .. 223

How It Works .. 224

10-8. Returning a Collection As a Parameter ..224

Problem .. 224

Solution .. 224

How It Works .. 225

10-9. Counting the Members in a Collection ...226

Problem .. 226

Solution .. 226

How It Works .. 226

10-10. Deleting a Record from a Collection...227

Problem .. 227

Solution .. 227

How It Works .. 228

10-11. Checking Whether an Element Exists...228

Problem .. 228

Solution .. 228

How It Works .. 229

10-12. Increasing the Size of a Collection ...229

Problem .. 229

Solution .. 229

How It Works .. 230

10-13. Navigating Collections..230

Problem .. 230

Solution .. 230

 CONTENTS

xxiv

How It Works .. 231

10-14. Trimming a Collection ..232

Problem .. 232

Solution .. 232

How It Works .. 232

 Chapter 11: Automating Routine Tasks ..233

11-1. Scheduling Recurring Jobs ..233

Problem .. 233

Solution .. 233

How It Works .. 233

11-2. E-mailing Output from a Scheduled Job ..234

Problem .. 234

Solution .. 234

How It Works .. 235

11-3. Using E-mail for Job Status Notification ..235

Problem .. 235

Solution .. 235

How It Works .. 235

11-4. Refreshing a Materialized View on a Timed Interval ..236

Problem .. 236

Solution .. 236

How It Works .. 238

11-5. Synchronizing Data with a Remote Data Source..238

Problem .. 238

Solution .. 239

How It Works .. 240

11-6. Scheduling a Job Chain..240

Problem .. 240

 CONTENTS

xxv

Solution .. 241

How It Works .. 243

 Chapter 12: Oracle SQL Developer ..247

12-1. Creating Standard and Privileged Database Connections....................................247

Problem .. 247

Solution .. 247

How It Works .. 248

12-2. Obtaining Information About Tables...249

Problem .. 249

Solution .. 249

How It Works .. 250

12-3. Enabling Output to Be Displayed..251

Problem .. 251

Solution .. 252

How It Works .. 252

12-4. Writing and Executing PL/SQL..253

Problem .. 253

Solution .. 253

How It Works .. 254

12-5. Creating and Executing a Script...256

Problem .. 256

Solution .. 256

How It Works .. 257

12-6. Accepting User Input for Substitution Variables...258

Problem .. 258

Solution .. 258

How It Works .. 258

12-7. Saving Pieces of Code for Quick Access ..259

 CONTENTS

xxvi

Problem .. 259

Solution .. 259

How It Works .. 259

12-8. Creating a Function ..261

Problem .. 261

Solution .. 261

How It Works .. 262

12-9. Creating a Stored Procedure ..265

Problem .. 265

Solution .. 265

How It Works .. 266

12-10. Creating a Package Header and Body..268

Problem .. 268

Solution .. 268

How It Works .. 269

12-11. Creating a Trigger ..272

Problem .. 272

Solution .. 272

How It Works .. 273

12-12. Debugging Stored Code ...276

Problem .. 276

Solution .. 276

How It Works .. 276

12-13. Compiling Code Within the Navigator...278

Problem .. 278

Solution .. 279

How It Works .. 279

 CONTENTS

xxvii

 Chapter 13: Analyzing and Improving Performance...281

13-1. Installing DBMS_PROFILER ..281

Problem .. 281

Solution .. 281

How It Works .. 282

13-2. Identifying Bottlenecks...283

Problem .. 283

Solution .. 283

How It Works .. 284

13-3. Speeding Up Read/Write Loops..285

Problem .. 285

Solution .. 285

How It Works .. 286

13-4. Passing Large or Complex Collections as OUT Parameters287

Problem .. 287

Solution .. 287

How It Works .. 288

13-5. Optimizing Computationally Intensive Code...288

Problem .. 288

Solution .. 288

How It Works .. 289

13-6. Improving Initial Execution Running Time..290

Problem .. 290

Solution .. 290

How It Works .. 290

 Chapter 14: Using PL/SQL on the Web ..291

14-1. Running a PL/SQL Procedure on the Web ..291

Problem .. 291

 CONTENTS

xxviii

Solution .. 291

How It Works .. 292

14-2. Creating a Common Set of HTML Page Generation Procedures...........................292

Problem .. 293

Solution .. 293

How It Works .. 294

14-3 Creating an Input Form ...295

Problem .. 295

Solution .. 295

How It Works .. 297

14-4. Creating a Web–based Report Using PL/SQL Procedures....................................299

Problem .. 299

Solution .. 299

How It Works .. 301

14-5. Displaying Data from Tables ..302

Problem .. 302

Solution .. 302

How It Works .. 303

14-6. Creating a Web Form Dropdown List from a Database Query..............................303

Problem .. 303

Solution .. 303

How It Works .. 305

14-7. Creating a Sortable Web Report ...305

Problem .. 305

Solution .. 305

How It Works .. 307

14-8. Passing Data Between Web Pages...308

Problem .. 308

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

xxix

Solution .. 308

How It Works .. 309

14-9. Viewing Errors for Debugging Web Apps ...310

Problem .. 310

Solution .. 310

How It Works .. 310

14-10. Generating JavaScript via PL/SQL..311

Problem .. 311

Solution .. 311

How It Works .. 313

14-11. Generating XML Output ..314

Problem .. 314

Solution .. 314

How It Works .. 315

14-12. Creating an Input Form with AJAX ...315

Problem .. 315

Solution .. 315

How It Works .. 317

 Chapter 15: Java in the Database...319

15-1. Creating a Java Database Class...319

Problem .. 319

Solution .. 319

How It Works .. 320

15-2. Loading a Java Database Class into a Database..321

Problem .. 321

How It Works .. 323

15-3. Loading a Compiled Java Class Into the Database...323

Problem .. 323

 CONTENTS

xxx

Solution . .. 324

How It Works . .. 324

15-4. Exposing a Java Class As a Stored Procedure . ..325

Problem . .. 325

Solution . .. 325

How It Works . .. 325

15-5. Executing a Java Stored Procedure . ..325

Problem . .. 325

Solution . .. 326

How It Works . .. 326

15-6. Calling a Java Stored Procedure from PL/SQL . ..326

Problem . .. 326

Solution . .. 327

How It Works . .. 328

15-7. Passing Parameters Between PL/SQL and Java328

Problem . .. 328

Solution . .. 328

How It Works . .. 329

15-8. Creating and Calling a Java Database Function. ..330

Problem . .. 330

Solution . .. 331

How It Works . .. 332

15-9. Creating a Java Database Trigger332

Problem . .. 332

Solution . .. 332

How It Works . .. 333

15-10. Passing Data Objects from PL/SQL to Java. ...334

Problem . .. 334

 CONTENTS

xxxi

Solution .. 334

How It Works .. 336

15-11. Embedding a Java Class Into a PL/SQL Package ...336

Problem .. 336

Solution .. 336

How It Works .. 338

15-12. Loading Java Libraries Into the Database ..338

Problem .. 338

Solution .. 338

How It Works .. 340

15-13. Removing a Java Class ..340

Problem .. 340

Solution .. 341

How It Works .. 341

15-14. Retrieving Database Metadata with Java...341

Problem .. 341

Solution .. 341

How It Works .. 342

15-15. Querying the Database to Help Resolve Java Compilation Issues343

Problem .. 343

Solution .. 343

 Chapter 16: Accessing PL/SQL from JDBC, HTTP, Groovy, and Jython...............345

16-1. Accessing a PL/SQL Stored Procedure via JDBC ...345

Problem .. 345

Solution .. 345

How It Works .. 347

16-2. Accessing a PL/SQL Stored Function from JDBC ...348

Problem .. 348

 CONTENTS

xxxii

Solution .. 348

How It Works .. 349

16-3. Accessing PL/SQL Web Procedures with HTTP ..350

Problem .. 350

Solution .. 350

How It Works .. 354

16-4. Accessing PL/SQL from Jython ..355

Problem .. 355

How It Works .. 357

16-5. Accessing PL/SQL from Groovy ..358

Problem .. 358

Solution .. 358

How It Works .. 359

 Chapter 17: Unit Testing With utPLSQL...361

17-1. Testing Stored PL/SQL Code Without Unit Tests ..361

Problem .. 361

Solution .. 361

How It Works .. 363

17-2. Installing the utPLSQL Unit Testing Framework...363

Problem .. 363

Solution .. 364

How It Works .. 364

17-3. Building a utPLSQL Test Package ..365

Problem .. 365

Solution .. 365

How It Works .. 366

17-4. Writing a utPLSQL Unit Test Procedure ..367

Problem .. 367

 CONTENTS

xxxiii

Solution .. 367

How It Works .. 368

17-5. Running a utPLSQL Test...369

Problem .. 369

Solution .. 370

How It Works .. 373

17-6. Building a utPLSQL Test Suite..373

Problem .. 373

Solution .. 373

How It Works .. 373

17-7. Running a utPLSQL Test Suite..374

Problem .. 374

Solution .. 374

How It Works .. 381

17-8. Reconfiguring utPLSQL Parameters ...381

Problem .. 381

Solution .. 381

How It Works .. 381

17-9. Redirecting upPLSQL Test Results to a File ...384

Problem .. 384

Solution .. 384

How It Works .. 385

17-10. Automating Unit Tests for PL/SQL and Java Stored Procedures Using Ant........385

Problem .. 385

Solution .. 386

How It Works .. 388

 Index ...391

xxxiv

 About the Authors

 Josh Juneau has been developing software since the mid-1990s. Database
application programming has been the focus of his career since the beginning.
He became an Oracle Database administrator and adopted the PL/SQL
language for performing administrative tasks and developing applications for
Oracle Database. As his skills evolved, he began to incorporate Java into his
PL/SQL applications and later began to develop stand-alone applications in
Java. During his tenure as a developer, he has combined his knowledge of
PL/SQL and Java to develop robust Oracle Database applications that harness
the great features offered by both technologies. He has extended his knowledge
of the JVM by learning and developing applications with other JVM languages
such as Jython and Groovy. His interest in learning new languages that run on

the JVM led to his interest in Jython. Since 2006, Josh has been the editor and publisher for the Jython
Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython programming language.
Josh was the lead author for The Definitive Guide to Jython, which was published in early 2010 by Apress.
He has most recently become the lead for the Django-Jython project
(http://code.google.com/p/django-jython/), after developing the project’s implementation for the
Oracle Database. To hear more from Josh, follow his blog at http://jj-blogger.blogspot.com. You can
also follow him on Twitter via @javajuneau.

 Matt Arena has been developing Oracle Database applications for 25
years. He’s focused on web-based applications since the Web was first
developed. Matt has worked in every phase of the project development life
cycle but enjoys database modeling and programming the most.

http://code.google.com/p/django-jython
http://jj-blogger.blogspot.com

 ACKNOWLED

xxxv

About the Technical Reviewer

 Bob Bryla is an Oracle 9i, 10g, and 11g Certified Professional with more than
20 years of experience in database design, database application development,
training, and database administration. He is an Internet database analyst and
Oracle DBA at Lands’ End, Inc., in Dodgeville, Wisconsin. He is the author of
several other Oracle DBA books for both novice and seasoned professionals.

 INTRODUCTION

xxxvi

Acknowledgments

This book is dedicated to my wife and kids...we made it through another one. I would like to thank my
wife Angela for always being so great, even when there were days that I had to work on it instead of
spending time with my family. Happy anniversary, Angela; this has been the best ten years of my life,
and I look forward to growing old with you and watching our children grow up.

Thank you to my children, Kaitlyn, Jacob, Matthew, and Zachary, for understanding when I needed
to work on this book. There were many times throughout the production of this book that I had to work
late on Saturday mornings or take time out of the day to read and write for the book. Thanks for being
patient with me; I hope that you will read this book someday and understand why my eyes were
plastered to the computer screen for many hours on end. I know that at least two of you will follow in my
footsteps and become developers!

I want to thank my family for supporting me throughout my career and for taking an interest in my
work. I hope that you will enjoy reading it, and maybe you can learn why I am such an Oracle and Java
enthusiast. I also want to thank my friends and co-workers for their support, especially Roger Slisz and
Kent Collins, for trusting me to be the brains behind application development for our section.

I owe the Jython and Java communities a huge thanks for keeping me involved. Even when times are
slow, the community keeps me moving forward to learn new and useful things. A big thank-you to Jim
Baker who was responsible for getting me started in the field of writing books.

Thanks to Jonathan Gennick for providing me with the opportunity to write this book. I look forward
to working with you again on future projects. I also thank Bob Bryla, John Osborne, and Adam Heath for
the useful feedback they provided throughout the authoring of this book. I especially want to thank my
coauthor, Matt Arena, for stepping in and lending me a hand with the book; your material is excellent.
Matt, you showed me the ropes in PL/SQL, and it has been a privilege to work with you on authoring this
book. I hope to work on many more projects together.

Lastly, thanks to the Oracle community and readers of this book. We enjoy the privilege of working
with the number-one database. This book is my contribution to the community, and I hope it inspires
many to utilize PL/SQL and Oracle to its full potential.

- Josh Juneau

Prayerful thanks to God for all the blessings He has given me in life, especially Pat, my loving wife. I want
to thank Michael, my terrific son, for whom this book is dedicated, for being an amazing person and for
giving me a sweet daughter-in-law Anna and wonderful grandchildren, Michael and Kyra (and for the
future grandchildren). I also thank my parents, John and Jane, and my siblings John, Mark, Kathi and
Cindy for many sacrifices, wisdom and support throughout my life.

Josh Juneau, respected friend, colleague and lead author of this book, my sincere thanks for giving
me the opportunity to contribute to your work. It has been a great pleasure and I hope to work with you
again.

 ACKNOWLEDGMENTS

xxxvii

I thank Jonathan Gennick, Adam Heath, Bob Bryla, John Osborn and the entire editorial staff at
Apress for their guidance and support throughout the process of writing this book.

I’d like to Dr. Paul Kaiser, Dr. Steven Berger and Brother Joseph Ninh of Lewis University for
teaching me the foundations of computer programming and instilling in me the passion to learn.

Finally, to KLN angel in Heaven ~ I will always remember you.

- Matt Arena

xxxviii

Introduction

Oracle Database is one of the most advanced relational databases available. It includes technologies that
empower you to work with your data in ways that no other database offers. In the early days of Oracle
Database, Structured Query Language (SQL) was used to work directly with the data, but as time went
on, people turned to other languages outside the database for performing more sophisticated tasks with
data. Although these procedural languages offered a powerful way to harness data, developers and
database administrators wanted a language that was easier to use and bound more closely to the data.
Oracle Corporation addressed that need by introducing Procedural Language/Structured Query
Language (PL/SQL) into Oracle Database in release 7. This language offered the best of both worlds,
allowing developers and database administrators to work directly with data via SQL and perform routine
programming tasks within the database.

The PL/SQL programming language was influenced by the Ada programming language. In fact, the
syntax is much the same as Ada. When PL/SQL was originated, it contained many constructs that are
available in other languages, including variables and arrays. In Oracle Database 8, the language began to
take on more of an object-oriented dialect, allowing developers to create types and develop applications
in a way that was more in tune with other modern-day languages. The language continues to grow,
adding new features with each release of Oracle Database and making PL/SQL an essential tool for
anyone programming against an Oracle Database.

PL/SQL can be quite powerful for performing routine database tasks such as creating, returning,
updating, and deleting records. However, its capabilities go far beyond performing the routine tasks.
Database administrators can use PL/SQL to create powerful database procedures and queries among
other things, and developers can use it for developing sophisticated web-based applications, working
with stored Java classes, and much more.

The Recipe Approach
Although plenty of PL/SQL references are available today, this book takes a different approach. You’ll
find an example-based approach in which each chapter is built of sections containing solutions to
specific, real-life programming problems. When faced with a problem, you can turn to the section for
that problem and find a proven solution that you can modify and implement.

Each recipe contains a problem statement, a solution, and a detailed explanation of how the
solution works. Some of the recipes contain more than one solution, and many of those recipes will also
contain more than one section explaining how the solutions work.

The problem statements have been written so that you can easily identify with the topics. We’ve
tried to make it obvious from the titles exactly what recipe you need to look at in order to get the job at
hand completed.

The chapters have been organized in a fashion that allow for concepts to build upon each other as
the book progresses. Yet we’ve taken care to write the recipes without assuming that you have read all
the preceding content in the book. We’ve designed the book so that you can “dip in” randomly to
whatever recipe addresses the problem you are facing at a given moment.

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xxxix

Many of the examples have been written and tested using Oracle’s SQL*Plus environment, but the
examples can also be ported to other environments such as Oracle SQL Developer and Oracle
Application Express. In fact, Chapter 12 is devoted to learning the concepts and strategies behind using
Oracle SQL Developer for working with PL/SQL.

We have been using PL/SQL for several years, and over that time we have watched the language
mature. We think PL/SQL is the best language to use for working directly with Oracle Database. We also
think it can be advantageous when used in combination with other languages such as Java to develop
applications that take advantage of the strengths offered by each technology.

Many of the recipes in this book focus on learning how to use the language features in a way that
applies each feature to a particular problem scenario. Other recipes in this book contain solutions that
we used to resolve many of the problems that we have encountered over the years.

We have used the PL/SQL language for running database administrative tasks, writing entire web
applications, developing web services, working in conjunction with Java and other languages, and much
more. This book will provide you with the knowledge that we have picked up along the way in using the
language for different solutions.

We hope that you will enjoy this book and that you will embrace the power of PL/SQL and learn to
take full advantage of what Oracle Database has to offer. We have had a great time writing this book, and
we look forward to updating it as the technology changes and new recipes are formed. We encourage
you to post suggestions or feedback for this book at Apress.com. Thanks for reading this book. We hope
you will enjoy using PL/SQL and find it to be as powerful as we do.

Audience
This book is intended for all audiences, beginners and advanced developers alike. We cover a wide
gamut of problems and solutions. Beginners will find solutions to some of the most common PL/SQL
programming tasks, such as trapping errors, writing loops, and retrieving data. Intermediate and
advanced users will find solutions to more advanced problems such as those encountered when
developing web applications and working with dynamic languages.

Example Code
Source code is available for many of the examples shown in this book. You can download that source
code from the book’s catalog page on the Apress web site. Here is the URL for that page:

http://apress.com/book/view/1430232072

Once there, look under the book’s cover image for the catalog page section entitled Book Resources.
You’ll see a Source Code link. Click that link to download a zip archive containing the example code for
this book.

To get started with the source code, please install the HR tables using the scripts that are contained
within the hr folder in the source download. These tables can be added to the schema of your choice.
Once you have added these tables, then you will be ready to run the examples provided with the book.

http://apress.com/book/view/1430232072

C H A P T E R 1

1

PL/SQL Fundamentals

The Oracle PL/SQL language is important for database administrators and developers of Oracle
Database products. Developing PL/SQL code requires a fundamental knowledge of the database, but
there are also some key components that each program will need to use. This chapter embarks on a
short journey through some recipes to get you better acquainted with those fundamental components.

This chapter is targeted as a starting point for those who are new to PL/SQL. However, those who
are very familiar with the language may also want to glance through these recipes as a refresher. Who
knows, you may even find a solution or two that you haven’t ever seen before!

As stated in the introduction, this book focuses on Oracle Database 11g Release 2. However, many of
the recipes will work in other versions of Oracle Database without any changes. All the recipes in this
particular chapter are fundamental and should work unchanged in any version of Oracle Database that
you’re likely to encounter.

1-1. Creating a Block of Code

Problem
You are interested in creating an executable block of PL/SQL code.

Solution
Write the keywords BEGIN and END. Place your lines of code between those two keywords. Here’s an
example:

BEGIN
 Executable statements go here…
END;

If you want to introduce variables for your PL/SQL block, you must precede your block with a

DECLARE section. Here’s an example:

DECLARE
 One or more variable declarations
BEGIN
 One or more PL/SQL statements
END;

CHAPTER 1 PL/SQL FUNDAMENTALS

2

How It Works
A block of code is an executable program that performs a unit of work. The minimum executable block
of code starts with the keyword BEGIN and ends with the keyword END. In between those two keywords
there should be one or more PL/SQL statements that comprise your code block.

In practice, you’ll find that you most often want to work with variables. That’s why you need the
DECLARE…BEGIN…END pattern in the solution’s second example. One or more variable or constant
declarations can be made within the declaration section, and they will then be available for use within
your code block.

A PL/SQL application may consist of one or more code blocks, and some of them may even be
recursively nested within each other. Variables that are defined within the DECLARE section can be used
by the code block(s) immediately following, until the outer END keyword is reached.

1-2. Executing a Block of Code in SQL*Plus

Problem
You want to execute a block of PL/SQL code within the SQL*Plus command-line utility.

Solution
The solution to this recipe is multitiered, in that executing a block of code in SQL*Plus incorporates at
least two steps:

Enter the PL/SQL code into the SQL*Plus utility.

Execute the code block by simply placing a backslash (/) as the last line of code, and then
press the Enter key.

The following is an example displaying a code block that has been typed into SQL*Plus:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE('HELLO WORLD');
 3 END;
 4 /

How It Works
To execute code within SQL*Plus, you simply type the executable block and place a forward slash (/)
after the closing END. The code will be executed by the SQL*Plus interpreter when the slash is
encountered. Once the code has been executed, control will be returned to the user at the SQL*Plus
prompt. This differs from the execution of a query within SQL*Plus because when you write a SELECT
statement, it can be executed by simply placing a semicolon at the end and hitting the Enter key.

 Note Be sure to put the forward slash on a line by itself and to make it the first character on that line.

 CHAPTER 1 PL/SQL FUNDAMENTALS

3

If the code you are executing contains a DECLARE section, then its execution will resemble the
following:

SQL> DECLARE
 2 -- Some cursor and variable declarations
 3 BEGIN
 4 DBMS_OUTPUT.PUT_LINE('Hello World');
 5 END;
 6 /
Hello World

PL/SQL procedure successfully completed.

You also follow a similar syntax when creating stored procedures, packages, and functions. To

create or replace stored code, write a CREATE statement and use a trailing slash, followed by pressing the
Enter key. For example, then you can use the following code to create a simple stored procedure that
prints a line of text. Notice how it contains a trailing slash character.

SQL> CREATE OR REPLACE PROCEDURE hello_world AS
 2 BEGIN
 3 DBMS_OUTPUT.PUT_LINE('Hello World');
 4 END;
 5 /

Procedure created.

Most likely, you will use SQL*Plus for much of your development life cycle. It is easy to execute code

blocks and create stored code using the syntax discussed in this recipe. The same syntax can also be
carried over to the Oracle Application Express environment. The Oracle Application Express
environment contains an embedded SQL*Plus interpreter that can be used for performing the same
tasks that you would perform using the standard client. For more information about using Oracle
Application Express for building and maintaining web applications, please see the online Oracle
documentation at http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11946/toc.htm.

1-3. Storing Code in a Script

Problem
Rather than typing your PL/SQL code into the SQL*Plus utility each time you want to run it, you want to
store the code in an executable script.

Solution
Open your favorite text editor or development environment; type the PL/SQL code into a new file, and
save the file using the .sql extension. The script can contain any number of PL/SQL statements, but the
last line of the script must be a forward slash (/).

For example, you could place the following lines into a file named count_down.sql:

SET SERVEROUTPUT ON;
DECLARE

http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11946/toc.htm

CHAPTER 1 PL/SQL FUNDAMENTALS

4

 counter NUMBER;
BEGIN
 FOR counter IN REVERSE 0..10 LOOP
 DBMS_OUTPUT.PUT_LINE (counter);
 END LOOP;
END;

Now you have a file that you can execute from SQL*Plus any time you want to count down from ten

to zero.

How It Works
You can basically use any text editor or development environment to create and save your script. The
key is to ensure that the file extension on the saved script is .sql so that SQL development environments
and other developers recognize it as a stored SQL script. SQL Developer supports a number of additional
extensions for more specific types of PL/SQL. To learn more about using SQL Developer, please see
Chapter 12. Once the script has been stored, it can be executed within SQL*Plus. See the next recipe for
details on doing that.

 Note The line SET SERVEROUTPUT ON at the beginning of the script is an important detail. That command

instructs SQL*Plus to look for and display any output from DBMS_OUTPUT.PUT_LINE. A common mistake is to omit

the SET SERVEROUTPUT ON command and then be left wondering why you don’t see any output.

1-4. Executing a Stored Script

Problem
You have stored an SQL script to your file system and want to execute it in SQL*Plus.

Solution
Assume you have a stored script named my_stored_script.sql and that it is saved within a directory
named /Oracle/scripts/. You can execute that script using any one of the following approaches:

• Traverse into the directory containing the script, then connect to a database via
SQL*Plus, and finally issue the following command:

@my_stored_script.sql

• Open the command line or terminal, connect to the database via SQL*Plus, and
issue the following command:

@/Oracle/scripts/my_stored_script.sql

• Open command line or terminal, and issue the following command:
sqlplus username/password@database my_stored_script.sql

mailto:@my_stored_script.sql

 CHAPTER 1 PL/SQL FUNDAMENTALS

5

How It Works
Notice that the first two solutions involved an @ symbol before the script’s file name. If you are already
connected and have an open SQL*Plus session, then you must place an @ symbol before the path/script
name in order for the script to be executed. Otherwise, if you are invoking both SQL*Plus and the script
from the operating-system command line, then you do not need the leading @ command. The @
command is a SQL*Plus command that tells the interpreter to execute the code contained in the
specified SQL file.

Oftentimes, database administrators will create one or more stored scripts to be executed to
complete a task. An administrator will then set up a separate script containing the database connection
information followed by one or more scripts to be executed. Such a script can then be executed by the
operating system to invoke SQL*Plus, which in turn executes the scripts that contain the actual code to
perform the work. If there is only one script to be executed, then an administrator will usually opt to use
the third option from the solution to connect and execute a script. We will learn more about configuring
PL/SQL jobs in Chapter 11.

1-5. Accepting User Input from the Keyboard

Problem
You want to write a script that prompts the user for some input. You want your PL/SQL code to then use
that input to generate some results.

Solution
SQL*Plus provides a facility to accept user input. Use ampersand (&) character to indicate that a
particular value should be entered from the keyboard. Here’s an example:

DECLARE
 emp_count NUMBER;
BEGIN
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE department_id = &department_id;
END;

If the previous block is executed from SQL*Plus, you will see the following text, which prompts you

to enter a department ID. In this case, the department ID of 40 is used.

Enter value for department_id: 40
old 7: WHERE department_id = &department_id;
new 7: WHERE department_id = 40;

How It Works
SQL*Plus uses the ampersand (&) character to indicate a value should be prompted for at the command
line or terminal and assigned to the variable name immediately following the ampersand. The text
immediately following the ampersand is the variable to which the input will be assigned, and it will be
displayed as the prompt.

CHAPTER 1 PL/SQL FUNDAMENTALS

6

The variable following the & character is known as a substitution variable. It is important to note that a
substitution variable is meaningful to SQL*Plus. Substitution variables are not “seen” by the database
engine. SQL*Plus actually replaces the variable reference with the text that the user entered. As far as the
database is concerned, the solution code contains the following WHERE clause:

WHERE department_id = 40;

If you want to reference the same substitution variable at a different point in your code, you can

place two ampersands in front of the first to tell SQL*Plus that you want to retain that value for use at a
later time. For instance, the following code block first obtains the value from the keyboard using
&&variable_name, and then it prints that value out using &variable_name:

DECLARE
 emp_count NUMBER;
BEGIN
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE department_id = &&department_id;

 DBMS_OUTPUT.PUT_LINE('The employee count is: ' || emp_count ||
 ' for the department with an ID of: ' || &department_id);
END;

You can also use substitution variables in the DECLARE section of an anonymous code block to

immediately assign an initial value to a variable. An anonymous code block is a block of code that is not
stored in the database. It cannot be called by name, and it is executed only once unless it is stored into a
script. Placing substitution variables into the DECLARE section may be useful if a particular variable will be
used more than once throughout a code block. Here’s an example:

DECLARE
 dept_id_var NUMBER(4) := &department_id;
 dept_name VARCHAR2(30);
 emp_count NUMBER;
BEGIN
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE department_id = dept_id_var;

 SELECT department_name
 INTO dept_name
 FROM departments
 WHERE department_id = dept_id_var;

 DBMS_OUTPUT.PUT_LINE('There are ' || emp_count || ' employees ' ||
 'in the ' || dept_name || ' department.');
 END;

In this example, the substitution variable department_id will be assigned to the variable dept_id_var,

at which point dept_id_var can be used anywhere in the code block.

 CHAPTER 1 PL/SQL FUNDAMENTALS

7

When using substitution variables, it is imperative to pay attention to the type of value the user will
be entering at the keyboard. If a value will be a variable character (VARCHAR2) type, then the substitution
variable must be surrounded by single quotes, or you will receive an error when the input is processed.
Similarly, if a value should be a numeric (NUMBER) type, then there should not be single quotes placed
around the substitution variable. Here’s an example:

DECLARE
 first varchar2(20);
 last varchar2(25);
 emp_last VARCHAR2(25) := '&last_name';
 emp_count NUMBER;
BEGIN
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE last_name = emp_last;

 IF emp_count > 1 THEN
 DBMS_OUTPUT.PUT_LINE('More than 1 employee exists with that name.');
 ELSE
 SELECT first_name, last_name
 INTO first, last
 FROM employees
 WHERE last_name = emp_last;

 DBMS_OUTPUT.PUT_LINE('The matching employee is: ' ||
 first || ' ' || last);
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Please enter a different last name.');
END;

Of course, the previous assumes that there is only one person in the EMPLOYEES table that will match

the provided last_name. If there were possibly more than one person with a given age, then we would
have to begin looping through rows from a query. See Recipe 2-2 for an example of such looping. For
now, we simply print out a message if more than one employee with the same last name exists.

1-6. Displaying Results in SQL*Plus

Problem
You want to display query results at the SQL*Plus prompt.

Solution
Use the DBMS_OUTPUT package to assist in displaying query results or lines of text. The following example
depicts both of these use cases:

CHAPTER 1 PL/SQL FUNDAMENTALS

8

DECLARE
 first VARCHAR2(20);
 last VARCHAR2(25);
 BEGIN
 SELECT first_name, last_name
 INTO first, last
 FROM employees
 WHERE email = 'VJONES';
 DBMS_OUTPUT.PUT_LINE('The following employee matches your query:');
 DBMS_OUTPUT.PUT_LINE(first || ' ' || last);
 END;

The previous example uses DBMS_OUTPUT.PUT_LINE to print a line of text as well as the values of the

variables first and last.

How It Works
The DBMS_OUTPUT package contains several useful procedures. By far, the most widely used is PUT_LINE for
the purposes noted in the solution to this recipe. As you’ve seen, you can use the DBMS_OUTPUT.PUT_LINE
procedure to display the contents of a stored variable or any arbitrary text. Before any lines of output will
be displayed in SQL*Plus, you must first tell SQL*Plus to display server output by issuing this command:

SET SERVEROUTPUT ON;

Once issued, any lines of output created by DBMS_OUTPUT.PUT_LINE will be displayed. In a similar

fashion, the interpreter will no longer display output once the following command is issued:

SET SERVEROUTPUT OFF;

One important note to remember is that if you plan to print many lines, it may be a good idea to

resize the print buffer. When SET SERVEROUTPUT ON is issued, then the default buffer size is 20,000 bytes.
Any content that surpasses that size will be cut off. To increase the buffer, simply set the size of buffer
you’d like to use when turning the SERVEROUTPUT on:

SET SERVEROUTPUT ON SIZE 1000000;

The DBMS_OUTPUT package also has a buffer size limit. The buffer can be set from 2,000 to 1,000,000

bytes in size. The buffer can be set by passing the size to DBMS_ENABLE. If you attempt to exceed the size,
then an Oracle exception will be raised.

1-7. Commenting Your Code

Problem
You want to document your code with inline and multiline comments.

Solution
Place two dashes before any text to create a one-line comment. For example, in the following code there
is a comment placed before the query to describe its functionality:

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 PL/SQL FUNDAMENTALS

9

-- The following query obtains a count of rows from the employees table
SELECT COUNT(*)
FROM EMPLOYEES;

Multiline comments can be created beginning with a slash and asterisk (/*) and ending with an

asterisk and slash (*/). The following lines depict a multiple-line comment for a given code block:

/* This comment describes the functionality
 in the following code block. */

How It Works
Comments play a crucial role in code development. Not only are they useful for commenting inline code
to tip off future developers who may see the code, but they can also be useful to you when trying to
debug some code you authored several years ago. It can be useful to place comments before any lines of
code that may require some interpretation, and in some cases it is useful to place comments on the
same line as code itself. The double dashes can be placed at any position in a line of code, and any text
following the dashes becomes a comment. Here’s an example:

DECLARE
 emp_count NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO emp_count -- Local variable
 FROM EMPLOYEES;
END;

When PL/SQL sees a double dash, it ignores any text that follows for the remainder of the line.

Similarly, when a /* sequence is encountered, the interpreter ignores any lines of text until it encounters
a closing */.

1-8. Referencing a Block of Code

Problem
You want to reference a block of code within a code segment later in your program.

Solution
Assign a label to the block of code that you want to reference. A PL/SQL label consists of a unique
identifier surrounded by double angle brackets. For example, in the following code, you see that the
block has been labeled dept_block:

<<dept_block>>
DECLARE
 dept_name varchar2(30);
BEGIN
 SELECT department_name
 INTO dept_name
 FROM departments

CHAPTER 1 PL/SQL FUNDAMENTALS

10

 WHERE department_id = 230;
 DBMS_OUTPUT.PUT_LINE(dept_name);
END;

This code block can now be referenced by the label dept_block. See Recipe 1-9 for one example of
code block labels.

How It Works
Any block of code can be labeled with a unique identifier for readability purposes or for referencing

at a later point. The label can appear at the beginning of the code block and again at the end. The
following code is a representation of the same block that was listed in the solution, but the label has
been placed at the end as well.

<<dept_block>>
DECLARE
 dept_name varchar2(30);
BEGIN
 SELECT department_name
 INTO dept_name
 FROM departments
 WHERE department_id = 230;
 DBMS_OUTPUT.PUT_LINE(dept_name);
END dept_block;

Labeling can be useful for a variety of reasons. It is often useful to place a label on a block for
documentation and readability purposes. Furthermore, a label can be useful for referencing variables
that are part of a particular code block from outside the block, elsewhere in the program. The labeling
technique is useful for referencing variables from within nested loops. Labels can also assist in program
control by referencing blocks of code with such keywords as GOTO and EXIT.

1-9. Referring to Variables from Nested Blocks

Problem
A variable that is defined in an outer code block needs to be used within an inner block. However, there
is also a variable of the same name within the inner block. Thus, two variables with the same name are in
scope, and you need a mechanism for differentiating between them.

Solution
Label the code blocks, and use the labels to qualify the variable references. For instance, if a variable
dept_name is defined in an outer code block, which is labeled outer_block, then you can use the fully
qualified name outer_block.dept_name to reference that variable. Let’s take a look at an example:

<<outer_block>>
DECLARE
 mgr_id NUMBER(6) := '¤t_manager_id';
 dept_count number := 0;
BEGIN

 CHAPTER 1 PL/SQL FUNDAMENTALS

11

 SELECT count(*)
 INTO dept_count
 FROM departments
 WHERE manager_id = outer_block.mgr_id;

 IF dept_count > 0 THEN
 <<inner_block>>
 DECLARE
 dept_name VARCHAR2(30);
 mgr_id NUMBER(6):= '&new_manager_id';
 BEGIN
 SELECT department_name
 INTO dept_name
 FROM departments
 WHERE manager_id = outer_block.mgr_id;

 UPDATE departments
 SET manager_id = inner_block.mgr_id
 WHERE manager_id = outer_block.mgr_id;
 DBMS_OUTPUT.PUT_LINE
 ('Department manager ID has been changed for ' || dept_name);

 END inner_block;
 ELSE
 DBMS_OUTPUT.PUT_LINE('There are no departments listed for the manager');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('There are no departments listed for the manager');
END outer_block;

When the previous example is executed, SQL*Plus will prompt you for the current_manager_id and

new_manager_id values before execution begins. The database is then queried for the supplied
current_manager_id. If the manager_id is a valid department manager for a department contained within
the DEPARTMENTS table, then it is changed to match the value provided by new_manager_id.

How It Works
As you can see from the example, blocks can be nested within one another. An identifier can be used
within the block of code that defines it. If a block of code is nested within another block, those identifiers
that are declared within the outer block are visible from within the inner block. On the other hand, any
identifier declared within the inner block is not visible from the outer block. As you can see, nested
blocks are a great way to control the scope of identifier use.

Although it is not recommended that you use the same name for variables contained within
different blocks of code, labels can be very useful in the event that such name conflicts occur. If the
solution hadn’t contained block labels, then the outer block variable mgr_id identifier would not have
been accessible from within the inner block, since the inner block also contains an identifier by the same
name. Of course, the cleanest way to write code such as this is to use different identifier names for all the
variables. In that case, the outer block variable would be visible within the inner block without fully
qualifying the name, and block labels would not be required.

CHAPTER 1 PL/SQL FUNDAMENTALS

12

1-10. Ignoring Substitution Variables

Problem
You want to execute a script in SQL*Plus that contains elements that appear to be substitution variables,
but you do not intend them to be substitution variables. You want the interpreter to ignore them instead
of prompting the user for input.

Solution #1
One solution is to precede the & character with an escape character. The escape character tells SQL*Plus
that what follows is not intended to be a variable reference.

In the following code, an escape character is used to tell SQL*Plus to ignore the & character when it
is encountered and to treat “& Receiving” as simple text within a string:

SQL> SET ESCAPE '\'
SQL> INSERT INTO DEPARTMENTS VALUES(
 2 departments_seq.nextval,
 3 'Shipping \& Receiving',
 4 null,
 5 null);

1 row created.

Solution #2
Another solution is to completely disable the substitution variable feature. The next example uses the
SET DEFINE OFF command to tell SQL*Plus that it should ignore all substitution variables:

SQL> SET DEFINE OFF
INSERT INTO DEPARTMENTS VALUES(
departments_seq.nextval,
'Importing & Exporting',
null,
null);

1 row created.

How It Works
Oftentimes you will encounter a situation where you need to tell SQL*Plus to ignore substitution
variables for processing. As shown in the examples, there are a couple of different solutions in these
cases. It is up to you to decide which method works best for you. Usually the method that is chosen
depends upon the scenario.

Setting up an escape character via the SET ESCAPE command actually tells SQL*Plus to treat the
designated character as the escape character for all scenarios, so whenever that character is
encountered, then the character immediately following it should be ignored by the interpreter. By
“ignored,” I mean that the character will not trigger the normal functionality that you would expect, such
as prompting a user for input.

 CHAPTER 1 PL/SQL FUNDAMENTALS

13

Using the SET DEFINE OFF method will cause all substitution variables to be ignored. In effect, this
solution will affect only substitution variables and does not cause the interpreter to escape in any other
scenario. Since this method only escapes substitution variables, it is better suited for use when running
scripts. For instance, suppose you have a script named display_department_info.sql that contains the
following SQL:
SELECT department_id
FROM departments
WHERE department_name = 'Importing & Exporting';

If you execute the script via SQL*Plus without using one of the solutions provided in this recipe, you
will see the following message:

SQL> @display_department_id.sql

Enter value for exporting:

The reason this message occurs is because SQL*Plus is treating the ampersand in “Importing &
Exporting” as a substitution variable, which prompts the user to enter text. Now, try executing the same
script again, and this time issue the SET DEFINE OFF command first:

SQL> SET DEFINE OFF
SQL> @display_department_id.sql

DEPARTMENT_ID

 360

Using SET DEFINE OFF gives you the expected results.

1-11. Changing the Substitution Variable Character

Problem
You are interested in changing the substitution variable from & to some other character.

Solution
Issue the SET DEFINE command to set the new character. For example, say you want the substitution
character to be a caret (^). To that end, you can issue the SET DEFINE command shown in the following
example:

SQL> SET DEFINE ^
SQL> SELECT department_name
 2 FROM departments
 3 WHERE department_id = ^dept_id;
Enter value for dept_id: 150
old 3: where department_id = ^dept_id
new 3: where department_id = 150

DEPARTMENT_NAME

Shareholder Services

mailto:@display_department_id.sql
mailto:@display_department_id.sql

CHAPTER 1 PL/SQL FUNDAMENTALS

14

As shown in the example, the substitution variable dept_id is prefaced with the ^ symbol. That
works, since the SET DEFINE command specifies that symbol as the one to use.

How It Works
Issue the SET DEFINE command when you want to change the substitution variable character recognized
by SQL*Plus. The syntax for using the SET DEFINE command is as follows:

SET DEFINE character

The character can be any valid character. Any statement within the same SQL*Plus session will

utilize that character to denote a substitution variable after this command is issued.
The solution in this recipe can be most useful if you are working with a piece of code that contains

many occurrences of the default DEFINE character (&) in various string literals.

1-12. Creating a Variable to Match a Database Column Type

Problem
You are querying the database for a particular column, and you are interested in saving the column’s
value into a local variable. In doing so, you want to create the local variable with the same type as the
column being queried.

Solution
Make use of the %TYPE attribute of the column name in order to create the new variable. In the following
example, you will see that the dept_name variable is given the same type as the department_name database
table column.
DECLARE
 dept_name departments.department_name%TYPE;
 dept_id NUMBER(6) := &department_id;
BEGIN
 SELECT department_name
 INTO dept_name
 FROM departments
 WHERE department_id = dept_id;
 DBMS_OUTPUT.PUT_LINE('The department with the given ID is: ' || dept_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No department for the given ID');
END;

How It Works
The %TYPE attribute of a database column returns the column’s datatype. That type can then be used to
declare a variable, therefore providing a nice way to declare variables in your programs that are
consistent with the columns in your database.

The advantage of declaring variables using %TYPE is that if the original database column type is ever
modified, then all the variables that rely on that column will also change type accordingly. Hence, code
will be easier to maintain.

C H A P T E R 2

15

Essential SQL

SQL is an essential part of any database application. From queries to update statements to inserts and
deletes, database transactions consume much of a database application developer’s time. The PL/SQL
language is unmatched by any other in providing seamless integration between SQL and procedural
language for the Oracle Database. PL/SQL is based around database transactions, so the seamless
language characteristics help to provide ease of use and increased developer productivity.

This chapter will focus on some of the more widely used PL/SQL techniques for working directly
with the database. If you are looking for some great ways to insert, update, create, or delete records with
your application, then this is the chapter that you’ll want to read. The recipes will begin with showing
how to retrieve data and work with it. After that, you will find some recipes for updating data, deleting
rows, and more advanced topics such as removing duplicate rows from the database.

2-1. Retrieving a Single Row from the Database

Problem
You are interested in returning one row from a database table via a query that searches for an exact
match.

Solution #1
Use the SELECT…INTO syntax in order to retrieve the row from the database. You can choose to retrieve
one or more columns of data from the matching row. The following example depicts a scenario in which
a table is queried to return multiple columns from a single row:

DECLARE
 first VARCHAR2(20);
 last VARCHAR2(25);
 email VARCHAR2(25);
BEGIN
 SELECT first_name, last_name, email
 INTO first, last, email
 FROM employees
 WHERE employee_id = 100;

 DBMS_OUTPUT.PUT_LINE(
 'Employee Information for ID: ' || first || ' ' || last || ' - ' || email);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee matches the given ID');

CHAPTER 2 ESSENTIAL SQL

16

 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee matches the given ID');
END;

The example in this solution shows how you can retrieve a row from the database when given an

employee ID. Once the data is retrieved, then some formatted information regarding that employee is
printed to the command line via DBMS_OUTPUT. The following result shows what the response will look like
if a user enters an employee ID of 100:

Employee Information for ID: Steven King - SKING

PL/SQL procedure successfully completed.

As you can see, the employee Steven King has an employee ID of 100. You could modify this

example to retrieve any data columns from the EMPLOYEES table. For instance, if you wanted to return the
column HIRE_DATE, then you could do so by declaring one more variable and adjusting the SELECT INTO
statement accordingly.

Solution #2
It is also possible to use a cursor for selecting a single row from the database, although this technique is
not used quite as often as SELECT INTO. One particular use case for retrieving a single row via a cursor
would be if you were working with a dynamic query where the query string stored in a variable may
change. You will learn more about dynamic queries in Chapter 8. In the meantime, the following
example shows the use of a cursor that is expected to retrieve a single row of data with an explicit SELECT
statement:

DECLARE

 CURSOR emp_cursor IS
 SELECT first_name, last_name, email
 FROM employees
 WHERE employee_id = &emp_id;

 first VARCHAR2(20);
 last VARCHAR2(25);
 email VARCHAR2(25);

BEGIN
 OPEN emp_cursor;
 FETCH emp_cursor INTO first, last, email;
 IF emp_cursor%NOTFOUND THEN
 RAISE NO_DATA_FOUND;
 ELSE
 -- Perform second fetch to see if more than one row is returned
 FETCH emp_cursor INTO first, last, email;
 IF emp_cursor%FOUND THEN
 RAISE TOO_MANY_ROWS;
 ELSE
 DBMS_OUTPUT.PUT_LINE(
 'Employee Information for ID: ' || first || ' ' || last || ' - ' || email);

 CHAPTER 2 ESSENTIAL SQL

17

 END IF;
 END IF;

 CLOSE emp_cursor;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee matches the given ID');
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee matches the given ID');
END;

How It Works
There are two possible solutions to the problem in this recipe. One is to issue a SELECT…INTO statement,
which is a statement designed to return just one row. The other approach is to open a cursor, fetch the
one row, and close the cursor. Some argue that a cursor-based approach is always better. We keep a
more open mind on that point. Either approach is acceptable. If your application is predicated on
exactly one row being returned, it is actually easier to trap the exceptions of zero or multiple rows being
returned when using SELECT…INTO. Ultimately, the approach to use comes down to your own preference
and possibly to the question of which approach you are most familiar with.

Comments on Solution #1

The SELECT…INTO statement is a convenient way to return a single row from the database. It allows the
database to be queried and then returns values into local variables based upon a single-row query. The
format for using SELECT…INTO is as follows:

SELECT column_1, column_2
INTO variable_1, variable2
FROM table_name
WHERE filters;

The solution to this recipe queries the database using a SELECT…INTO statement in order to obtain

some information on a particular employee from the EMPLOYEES database table. The results are stored
into local variables and then printed out using DBMS_OUTPUT.PUT_LINE. There can be one or more
columns queried, and their values will be returned into the local variables that are listed within the INTO
clause in sequential order.

To provide an informative message to the end user when no data is found or if more than one row of
data is found, you can use an exception handler. Exception handlers allow you to recover from fatal
errors so that an application can continue to run as expected but provide meaningful details to the user
of the application. PL/SQL will immediately transfer control of execution to the exception block when an
exception is raised. Therefore, if the SELECT statement fails to find a row, then control is passed to the
exception block, and the NO_DATA_FOUND exception is raised. Similarly, PL/SQL throws the TOO_MANY_ROWS
exception when the query results in more than one row being returned.

CHAPTER 2 ESSENTIAL SQL

18

■ Note Chapter 9 gives more details on exception handling, including showing you how to create your own

exceptions.

A well-formulated application will be coded to ensure that corner cases and unexpected conditions
do not result in the application failing in front of the user. Proper exception handling is thus
instrumental to the success of an application in the real world. While retrieving rows from the database,
always ensure that you have provided proper handling for any possible outcome.

Comments on Solution #2

Some would suggest that the cursor approach is best, because it will not return an error in the event that
the SELECT statement returns multiple rows. We keep an open mind on that point. Consider that if you
are expecting exactly one row to be returned, getting multiple rows back represents an exception case
that you must somehow deal with. The cursor-based solution makes it easy to simply ignore that
exception case, but ignoring a condition that you do not expect to occur does not change the fact that it
has occurred.

Although a cursor is used, the cases where no data is returned or where too many rows are returned
given the user-supplied EMPLOYEE_ID still remain a reality. However, since cursors are specifically
designed to deal with zero rows or more than one row coming back from a query, no exceptions will be
raised if these situations occur. For this reason, Solution #2 contains some conditional logic that is used
to manually raise the desired exceptions. In the event that the user supplies the block with an invalid
EMPLOYEE_ID, the cursor will not fetch any data. The %NOTFOUND attribute of the cursor will be checked to
see whether the cursor successfully fetched data. If not, then the NO_DATA_FOUND exception is raised. If the
cursor is successful in retrieving data, then a second FETCH statement is issued to see whether more than
one row will be returned. If more than one row is returned, then the TOO_MANY_ROWS exception is raised;
otherwise, the expected output is displayed. In any event, the output that is displayed using either of the
solutions will be the same whether successful or not.

2-2. Qualifying Column and Variable Names

Problem
You have a variable and a column sharing the same name. You want to refer to both in the same SQL
statement.

For example, you decide that you’d like to search for records where LAST_NAME is not equal to a last
name that is provided by a user via an argument to a procedure call. Suppose you have declared a
variable LAST_NAME, and you want to alter the query to read as follows:

 SELECT first_name, last_name, email
 INTO first, last, email
 FROM employees
 WHERE last_name = last_name;

How does PL/SQL know which LAST_NAME you are referring to since both the table column name and

the variable name are the same? You need a way to differentiate your references.

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 ESSENTIAL SQL

19

Solution
You can use the dot notation to fully qualify the local variable name with the procedure name so that
PL/SQL can differentiate between the two. The altered query, including the fully qualified
procedure_name.variable solution, would read as follows:

CREATE OR REPLACE PROCEDURE retrieve_emp_info(last_name IN VARCHAR2) AS
 first VARCHAR2(20);
 last VARCHAR2(25);
 email VARCHAR2(25);

BEGIN
 SELECT first_name, last_name, email
 INTO first, last, email
 FROM employees
 WHERE last_name = retrieve_emp_info.last_name;

 DBMS_OUTPUT.PUT_LINE(
 'Employee Information for ID: ' || first || ' ' || last_name || ' - ' || email);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee matches the last name ' || last_name);
END;

How It Works
PL/SQL name resolution becomes very important in circumstances such as these, and by fully qualifying
the names, you can be sure that your code will work as expected. The solution used dot notation to fully
qualify the variable name.

The column name could have been qualified with the table name, as in EMPLOYEES.LAST_NAME.
However, there’s no need to qualify the column name in this case. Because the reference occurs within a
SELECT, the closest resolution for LAST_NAME becomes the table column of that name. So, in this particular
case, it is necessary only to qualify references to variable names in the enclosing PL/SQL block.

If you are executing a simple BEGIN…END block, then you also have the option of fully qualifying the
variable using the dot notation along with the block label. For the purposes of this demonstration, let’s
say that the code block shown in the solution was labeled <<emp_info>>. You could then fully qualify a
variable named description as follows:

<<emp_info>>
DECLARE
 last_name VARCHAR2(25) := 'Fay';
 first VARCHAR2(20);
 last VARCHAR2(25);
 email VARCHAR2(25);
BEGIN
 SELECT first_name, last_name, email
 INTO first, last, email
 FROM employees
 WHERE last_name = emp_info.last_name;
END;

CHAPTER 2 ESSENTIAL SQL

20

In this example, the LAST_NAME that is declared in the code block is used within the SELECT..INTO
query, and it is fully qualified with the code block label.

2-3. Declaring Variable Types That Match Column Types

Problem
You want to declare some variables in your code block that match the same datatypes as some columns
in a particular table. If the datatype on one of those columns changes, you’d like the code block to
automatically update the variable type to match that of the updated column.

■ Note Sharp-eyed readers will notice that we cover this problem redundantly in Chapter 1. We cover this

problem here as well, because the solution is fundamental to working in PL/SQL, especially to working with SQL in

PL/SQL. We don’t want you to miss what we discuss in this recipe. It is that important.

Solution
Use the %TYPE attribute on table columns to identify the types of data that will be returned into your
local variables. Instead of providing a hard-coded datatype for a variable, append %TYPE to the database
column name. Doing so will apply the datatype from the specified column to the variable you are
declaring.

In the following example, the same SELECT INTO query is issued, as in the previous problem, to
retrieve an employee record from the database. However, in this case, the variables are declared using
the %TYPE attribute rather than designating a specified datatype for each.

DECLARE
 first employees.first_name%TYPE;
 last employees.last_name%TYPE;
 email employees.email%TYPE;
BEGIN
 SELECT first_name, last_name, email
 INTO first, last, email
 FROM employees
 WHERE employee_id = &emp_id;
 DBMS_OUTPUT.PUT_LINE('Employee Information for ID: ' ||
 first || ' ' || last || ' - ' || email);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No matching employee was found, please try again.');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An unknown error has occured, please try again.');
END;

 CHAPTER 2 ESSENTIAL SQL

21

As you can see from the solution, the code block looks essentially the same as the one in the
previous recipe. The only difference is that here the %TYPE attribute of each database column is being
used in order to declare your local variable types.

How It Works
The %TYPE attribute can become a significant time-saver and savior for declaring variable types,
especially if the underlying database column types are subject to change. This attribute enables the local
variable to assume the same datatype of its corresponding database column type at runtime. Retrieving
several columns into local application variables can become tedious if you need to continually verify
that the datatypes of each variable are the same as those of the columns whose data they will consume.

The %TYPE attribute can be used when defining variables, constants, fields, and parameters. Using
%TYPE assures that the variables you declare will always remain synchronized with the datatypes of their
corresponding columns.

2-4. Returning Queried Data into a PL/SQL Record

Problem
Instead of retrieving only a select few columns via a database query, you’d rather return the entire
matching row. It can be a time-consuming task to replicate each of the table's columns in your
application by creating a local variable for each along with selecting the correct datatypes. Although you
can certainly make use of the %TYPE attribute while declaring the variables, you’d rather retrieve the
entire row into a single object. Furthermore, you’d like the object that the data is going to be stored into
to have the ability to assume the same datatypes for each of the columns being returned just as you
would by using the %TYPE attribute.

Solution
Make use of the %ROWTYPE attribute for the particular database table that you are querying. The %ROWTYPE
attribute returns a record type that represents a database row from the specified table. For instance, the
following example demonstrates how the %ROWTYPE attribute can store an entire employee table row for a
cursor:

DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM employees
 WHERE employee_id = &emp_id;
 -- Declaring a local variable using the ROWTYPE attribute
 -- of the employees table
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cur;
 FETCH emp_cur INTO emp_rec;
 IF emp_cur%FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Employee Information for ID: ' || emp_rec.first_name || ' ' ||
 emp_rec.last_name || ' - ' || emp_rec.email);
 ELSE

CHAPTER 2 ESSENTIAL SQL

22

 DBMS_OUTPUT.PUT_LINE('No matching employee for the given ID');
 END IF;
 CLOSE emp_cur;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee matches the given emp ID’);
END;

If the employee ID that is provided to the program in the example correlates to an employee record

in the database, then the cursor is able to FETCH the entire row into the emp_rec record type.

How It Works
The %ROWTYPE attribute represents an entire database table row as a record type. Each of the
corresponding table columns is represented within the record as a variable, and each variable in the
record inherits its type from the respective table column.

Using the %ROWTYPE attribute offers several advantages to declaring each variable individually. For
starters, declaring a single record type is much more productive than declaring several local variables to
correspond to each of the columns of a table. Also, if any of the table columns’ datatypes is ever
adjusted, then your code will not break because the %ROWTYPE attribute works in much the same manner
as the %TYPE attribute of a column in that it will automatically maintain the same datatypes as the
corresponding table columns. Therefore, if a column with a type of VARCHAR2(10) is changed to
VARCHAR2(100), that change will ripple through into your record definition.

Using %ROWTYPE also makes your code much easier to read because you are not littering local
variables throughout. Instead, you can use the dot notation to reference each of the different columns
that the record type returned by %ROWTYPE consists of. For instance, in the solution, the first_name,
last_name, and email columns are referenced from the emp_rec record type.

2-5. Creating Your Own Records to Receive Query Results

Problem
You want to query the database, return several columns from one or more tables, and store them into
local variables of a code block for processing. Rather than placing the values of the columns into
separate variables, you want to create a single variable that contains all the values.

Solution
Create a database RECORD containing variables to hold the data you want to retrieve from the database.
Since a RECORD can hold multiple variables of different datatypes, they work nicely for grouping data that
has been retrieved as a result of a query.

In the following example, the database is queried for the name and position of a player. The data
that is returned is used to populate a PL/SQL RECORD containing three separate variables: first name, last
name, and position.

DECLARE
 TYPE emp_info IS RECORD(first employees.first_name%TYPE,
 last employees.last_name%TYPE,
 email employees.email%TYPE);

 CHAPTER 2 ESSENTIAL SQL

23

 emp_info_rec emp_info;
BEGIN
 SELECT first_name, last_name, email
 INTO emp_info_rec
 FROM employees
 WHERE last_name = 'Vargas';

 DBMS_OUTPUT.PUT_LINE('The queried employee''s email address is ' || emp_info_rec.email);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee matches the last name provided');
END;

As you can see, the record is defined as its own TYPE, and then a variable named emp_info_rec is

declared using the record type. The queried data is then assigned to emp_info_rec, and its individual
values can later be accessed using the dot notation.

How It Works
Records are useful for passing similar data around within an application, but they are also quite useful
for simply retrieving data and organizing it nicely as is the case with the solution to this recipe. To create
a record, you first declare a record TYPE. This declaration can consist of one or more different datatypes
that represent columns of one or more database tables. Once the record type is declared, you create a
variable and define it as an instance of the record type. This variable is then used to populate and work
with the data stored in the record.

■ Note It is possible to create a record that matches the columns of a particular table exactly by using the

%ROWTYPE attribute of a database table. See the preceding Recipe 2-4 for details on doing that.

Cursors work very well with records of data. When declaring a cursor, you can select particular
columns of data to return into your record. The record variable then takes on the type of cursor%ROWTYPE.
In the following example, a cursor is used to determine which fields you want to return from EMPLOYEES.
That cursor’s %ROWTYPE attribute is then used to define a record variable that is used for holding the
queried data.

DECLARE
 CURSOR emp_cur IS
 SELECT first_name, last_name, email
 FROM employees
 WHERE employee_id = 100;

 emp_rec emp_cur%ROWTYPE;
BEGIN
 OPEN emp_cur;
 FETCH emp_cur INTO emp_rec;
 IF emp_cur %FOUND THEN
 CLOSE emp_cur;

CHAPTER 2 ESSENTIAL SQL

24

 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 '''s email is ' || emp_rec.email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('No employee matches the provided ID number');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee matches the last name provided');
END;

As you can see in this example, the cursor %ROWTYPE attribute creates a record type using the

columns that are queried by the cursor. The result is easy-to-read code that gains all the positive effects
of declaring record types via the %ROWTYPE attribute.

2-6. Looping Through Rows from a Query

Problem
A query that you are issuing to the database will return many rows. You want to loop through those rows
and process them accordingly.

Solution #1
There are a couple of different solutions for looping through rows from a query. One is to work directly
with a SELECT statement and use a FOR loop along with it. In the following example, you will see this
technique in action:

SET SERVEROUTPUT ON;
BEGIN
 FOR emp IN
 (
 SELECT first_name, last_name, email
 FROM employees
 WHERE commission_pct is not NULL
)
 LOOP
 DBMS_OUTPUT.PUT_LINE(emp.first_name || ' ' || emp.last_name || ' - ' || emp.email);
 END LOOP;
END;

Solution #2
Similarly, you can choose to use a FOR loop along with a cursor. Here’s an example:

SET SERVEROUTPUT ON;
DECLARE
 CURSOR emp_cur IS
 SELECT first_name, last_name, email
 FROM employees
 WHERE commission_pct is not NULL;

 CHAPTER 2 ESSENTIAL SQL

25

 emp_rec emp_cur%ROWTYPE;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(
 emp_rec.first_name || ' ' || emp_rec.last_name || ' - ' || emp_rec.email);
 END LOOP;
END;

Either of the two solutions demonstrated in this recipe will work fine. However, the second

technique using the cursor allows for more reusable code and is the more standard technique.

How It Works
The loop that is used in the first solution is also known as an implicit cursor FOR loop. No variables need
to be explicitly defined in that solution, because the FOR loop will automatically create a record using the
results of the query. That record will take the name provided in the FOR variable_name IN clause. That
record variable can then be used to reference the different columns that are returned by the query.

As demonstrated in the second solution to this recipe, a cursor is also a very useful way to loop
through the results of a query. This technique is also known as an explicit cursor FOR loop. This technique
is very similar to looping through the results of an explicitly listed query.

Neither solution requires you to explicitly open and close a cursor. In both cases, the opening and
closing is done on your behalf by the FOR loop processing.

As you can see, the FOR loop with the SELECT query in the first example is a bit more concise, and
there are fewer lines of code. The first example also contains no declarations. In the second example,
with the cursor, there are two declarations that account for more lines of code. However, using the
cursor is a standard technique that provides for more reusable code. For instance, you can elect to use
the cursor any number of times, and you’ll need to write the query only once when declaring the cursor.
On the contrary, if you wanted to reuse the query in the first example, then you would have to rewrite it,
and having to write the same query multiple times opens the door to errors and inconsistencies. We
recommend Solution #2.

2-7. Obtaining Environment and Session Information

Problem
You want to obtain environment and session information such as the name and IP address of the
current user so that the values can be stored into local variables for logging purposes.

Solution
Make use of the SYS_CONTEXT built-in function to query the database for the user’s information. Once you
have obtained the information, then store it into a local variable. At that point, you can do whatever
you’d like with it, such as save it in a logging table. The following code block demonstrates this
technique:

<<obtain_user_info>>
DECLARE
 username varchar2(100);
 ip_address varchar2(100);

CHAPTER 2 ESSENTIAL SQL

26

BEGIN
 SELECT SYS_CONTEXT('USERENV','SESSION_USER'), SYS_CONTEXT('USERENV','IP_ADDRESS')
 INTO username, ip_address
 FROM DUAL;

 DBMS_OUTPUT.PUT_LINE('The connected user is: ' || username || ', and the IP address
 is ' ||
 ip_address);
END;

Once this code block has been run, then the user’s information should be stored into the local

variables that have been declared within it.

How It Works
You can use the SYS_CONTEXT function to obtain important information regarding the current user’s
environment, among other things. It is oftentimes used for auditing purposes so that a particular code
block can grab important information about the connected user such as you’ve seen in the solution to
this recipe. The SYS_CONTEXT function allows you to define a namespace and then place parameters
within it so that they can be retrieved for use at a later time. The general syntax for the use of
SYS_CONTEXT is as follows:

SYS_CONTEXT('namespace','parameter'[,length])

A namespace can be any valid SQL identifier, and it must be created using the CREATE_CONTEXT

statement. The parameter must be a string or evaluate to a string, and it must be set using the
DBMS_SESSION.SET_CONTEXT procedure. The call to SYS_CONTEXT with a valid namespace and parameter
will result in the return of a value that has a VARCHAR2 datatype. The default maximum length of the
returned value is 256 bytes. However, this default maximum length can be overridden by specifying the
length when calling SYS_CONTEXT. The length is an optional parameter. The range of values for the length
is 1 to 4000, and if you specify an invalid value, then the default of 256 will be used.

The USERENV namespace is automatically available for use because it is a built-in namespace
provided by Oracle. The USERENV namespace contains session information for the current user. Table 2-1
lists the parameters that are available to use with the USERENV namespace.

Table 2-1. USERENV Parameter Listing

Parameter Description

ACTION Identifies the position in the application name.

AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the audit.

AUTHENTICATED_DATA Returns the data being used to authenticate the user.

AUTHENTICATION_TYPE Identifies how the user was authenticated.

 CHAPTER 2 ESSENTIAL SQL

27

Parameter Description

BG_JOB_ID If an Oracle Database background process was used to establish the
connection, then this returns the job ID of the current session. If no
background process was established, then NULL is returned.

CLIENT_IDENTIFIER Returns identifier that is set by the application.

CLIENT_INFO Returns up to 64 bytes of user session information that can be stored by an
application using the DBMS_APPLICATION_INFO package.

CURRENT_SCHEMA Returns the current session’s default schema.

CURRENT_SCHEMAID Returns the current schema’s identifier.

CURRENT_SQL Returns the first 4KB of the triggering SQL.

DB_DOMAIN Returns the value specified in the DB_DOMAIN parameter.

DB_NAME Returns the value specified in the DB_NAME parameter.

DB_UNIQUE_NAME Returns the value specified in the DB_UNIQUE_NAME parameter.

ENTRYID Returns the current audit entry number.

EXTERNAL_NAME Returns the external name of the database user.

FG_JOB_ID If an Oracle Database foreground process was used to establish the
connection, then this returns the job ID of the current session. If no
foreground process was established, then NULL is returned.

GLOBAL_CONTEXT_MEMORY Returns the number being used by the globally accessed context in the
System Global Area.

HOST Returns the host name of the machine from which the client has connected.

INSTANCE Returns the instance ID number of the current instance.

IP_ADDRESS Returns the IP address of the machine from which the client has connected.

ISDBA Returns TRUE if the user was authenticated as a DBA.

LANG Returns the ISO abbreviation of the language name.

LANGUAGE Returns the language and territory used by the session, along with the
character set.

CHAPTER 2 ESSENTIAL SQL

28

Parameter Description

MODULE Returns the application name. This name has to be set via the
DBMS_APPLICATION_INFO package.

NETWORK_PROTOCOL Returns the network protocol being used for communication.

NLS_CALENDAR Returns the current calendar of the current session.

NLS_CURRENCY Returns the currency of the current session.

NLS_DATE_FORMAT Returns the date format for the session.

NLS_DATE_LANGUAGE Returns the language being used for expressing dates.

NLS_SORT Returns the BINARY or linguistic sort basis.

NLS_TERRITORY Returns the territory of the current session.

OS_USER Returns the operating system user name of the client that initiated the
session.

PROXY_USER Returns the name of the database that opened the current session on behalf
of SESSION_USER.

PROXY_USERID Returns the identifier of the database user who opened the current session on
behalf of the SESSION_USER.

SERVICE_NAME Returns the name of the service to which a given session is connected.

SESSION_USER Returns the database user name through which the current user is
authenticated.

SESSION_USERID Returns the identifier of the database user name by which the current user is
authenticated.

SESSIONID Returns the auditing session identifier.

STATEMENTID Returns the auditing statement identifier.

TERMINAL Returns the operating system identifier for the client of the current session.

When SYS_CONTEXT is used within any query, it is most commonly issued against the DUAL table. The

DUAL table is installed along with the data dictionary when the Oracle Database is created. This table is
really a dummy table that contains one column that is appropriately named DUMMY. This column contains
the value X.

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 ESSENTIAL SQL

29

SQL> desc dual;
 Name Null? Type
 --- -------- ----------------------------
 DUMMY VARCHAR2(1)

Among other things, DUAL is useful for obtaining values from the database when no actual table is

needed. Our solution case is such a situation.

2-8. Formatting Query Results

Problem
Your boss asks you to print the results from a couple of queries in a nicely formatted manner.

Solution
Use a combination of different built-in formatting functions along with the concatenation operator (||)
to create a nice-looking basic report. The RPAD and LPAD functions along with the concatenation operator
are used together in the following example that displays a list of employees from a company:

DECLARE
 CURSOR emp_cur IS
 SELECT first_name, last_name, phone_number
 FROM employees;

 emp_rec employees%ROWTYPE;

BEGIN
 FOR emp_rec IN emp_cur LOOP
 IF emp_rec.phone_number IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE(RPAD(emp_rec.first_name || ' ' || emp_rec.last_name, 35,'.') ||
 emp_rec.phone_number);
 ELSE
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 ' does not have a phone number.');
 END IF;
 END LOOP;
END;

The following is another variant of the same report, but this time dashes are used instead of using
dots to space out the report:

DECLARE
 CURSOR emp_cur IS
 SELECT first_name, last_name, phone_number
 FROM employees;

 emp_rec employees%ROWTYPE;

BEGIN
 FOR emp_rec IN emp_cur LOOP

CHAPTER 2 ESSENTIAL SQL

30

 IF emp_rec.phone_number IS NOT NULL THEN
 -- CHECK FOR INTERNATIONAL PHONE NUMBERS
 IF length(emp_rec.phone_number) > 12 THEN
 DBMS_OUTPUT.PUT_LINE(RPAD(emp_rec.first_name || ' ' || emp_rec.last_name, 20)||
 ' - ' || LPAD(emp_rec.phone_number,18));
 ELSE
 DBMS_OUTPUT.PUT_LINE(RPAD(emp_rec.first_name || ' ' || emp_rec.last_name, 20)||
 ' - ' || LPAD(emp_rec.phone_number,12));
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 ' does not have a phone number.');
 END IF;
 END LOOP;
END;

How It Works
The RPAD and LPAD functions are used to return the data in a formatted manner. The RPAD function takes a
string of text and pads it on the right by the number of spaces provided by the second parameter. The
syntax for the RPAD function is as follows:

RPAD(input_text, n, character)

In this syntax, n is the number of spaces used to pad. Similarly, the LPAD function pads on the left of
the provided string. The syntax is exactly the same as RPAD; the only difference is the direction of the
padding. The combination of these two functions, along with the concatenation operator (||), provides
for some excellent formatting options.

It is important to look at the data being returned before you try to format it, especially to consider
what formatting options will look best when generating output for presentation. In the case of the
examples in this recipe, the latter example would be the most reasonable choice of formatting for the
data being returned, since the phone number includes dots in it. The first example uses dots to space out
the report, so too many dots may make the output difficult to read. Know your data, and then choose the
appropriate PL/SQL built-ins to format accordingly.

■ Note When using DBMS_OUTPUT to display data, please be sure to pay attention to the size of the buffer. You can

set the buffer size from 2,000 to 1,000,000 bytes by passing the size you desire to the DBMS_OUTPUT.ENABLE

procedure. If you attempt to display content over this size limit, then Oracle will raise an exception.

Oracle provides a number of built-in functions to use when formatting strings. Two others that are
especially useful are LTRIM(<string>) and RTRIM(<string>). These remove leading and trailing spaces,
respectively. See your Oracle SQL Reference manual for a complete list of available string functions.

 CHAPTER 2 ESSENTIAL SQL

31

2-9. Updating Rows Returned by a Query

Problem
You’ve queried the database and retrieved a row into a variable. You want to update some values
contained in the row and commit them to the database.

Solution
First, retrieve the database row that you want to update. Second, update the values in the row that need
to be changed, and then issue an UPDATE statement to modify the database with the updated values. In
the following example, a procedure is created that queries a table of employees for a particular
employee. The resulting employee’s department ID is then updated with the new one unless the
employee is already a member of the given department.

CREATE OR REPLACE PROCEDURE change_emp_dept(emp_id IN NUMBER,
 dept_id IN NUMBER) AS
 emp_row employees%ROWTYPE;
 dept departments.department_name%TYPE;
 rec_count number := 0;
BEGIN

 SELECT count(*)
 INTO rec_count
 FROM employees
 WHERE employee_id = emp_id;

 IF rec_count = 1 THEN
 SELECT *
 INTO emp_row
 FROM employees
 WHERE employee_id = emp_id;

 IF emp_row.department_id != dept_id THEN

 emp_row.department_id := dept_id;

 UPDATE employees SET ROW = emp_row
 WHERE employee_id = emp_id;

 SELECT department_name
 INTO dept
 from departments
 WHERE department_id = dept_id;

 DBMS_OUTPUT.PUT_LINE('The employee ' || emp_row.first_name || ' ' ||
 emp_row.last_name || ' is now in department: ' || dept);
 ELSE
 DBMS_OUTPUT.PUT_LINE('The employee is already in that department...no change');
 END IF;
 ELSIF rec_count > 1 THEN

CHAPTER 2 ESSENTIAL SQL

32

 DBMS_OUTPUT.PUT_LINE('The employee ID you entered is not unique');
 ELSE
 DBMS_OUTPUT.PUT_LINE('No employee records match the given employee ID');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid employee or department ID, try again');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Unsuccessful change, please check ID numbers and try again');
END;

As you can see, the example queries the database into a record declared using the %ROWTYPE

attribute. The value that needs to be updated is then modified using the data contained in the record.
Lastly, using the SET ROW clause updates the table with the modified record.

How It Works
As you’ve seen in the solution to the recipe, it is possible to update the values of a row returned by a
query using the UPDATE...SET ROW syntax. In many cases, using a single UPDATE statement can solve this
type of transaction. However, in some scenarios where you need to evaluate the current value of a
particular column, then this solution is the correct choice.

Using the UPDATE ROW statement, you can update entire database rows with a single variable of either
the %ROWTYPE or RECORD type. The UPDATE statement also allows you to return values after the update by
adding the RETURNING clause to the end of the statement followed by the column names to return and the
variables that will receive their values. Take a look at this next example:

DECLARE
 first employees.first_name%TYPE;
 last employees.last_name%TYPE;
 new_salary employees.salary%TYPE;
BEGIN

 UPDATE employees
 SET salary = salary + (salary * .03)
 WHERE employee_id = 100
 RETURNING first_name, last_name,salary INTO first, last, new_salary;

 DBMS_OUTPUT.PUT_LINE('The employee ' || first || ' ' || last || ' now has a salary of:
 ' || new_salary);
END;

As you can see, the example outputs the new values that are the result of the update statement.

Using the RETURNING clause saves a step in that you are not required to requery the table after the update
in order to display the updated results.

 CHAPTER 2 ESSENTIAL SQL

33

2-10. Updating Rows Returned by a Cursor

Problem
You’ve created a cursor to use for querying your data. You want to loop through the results using a
cursor for loop and update the data as needed.

Solution
Use the WHERE_CURRENT_OF clause within your loop to update the current data row in the iteration. In the
following example, the EMPLOYEES table is queried for all employees in a particular department. The
results of the query are then iterated using a FOR loop, and the salary is increased for each employee
record that is returned.

DECLARE
 CURSOR emp_sal_cur IS
 SELECT *
 FROM employees
 WHERE department_id = 60
 FOR UPDATE;

 emp_sal_rec emp_sal_cur%ROWTYPE;

 BEGIN
 FOR emp_sal_rec IN emp_sal_cur LOOP
 DBMS_OUTPUT.PUT_LINE('Old Salary: ' || emp_sal_rec.last_name ||
 ' - ' || emp_sal_rec.salary);

 UPDATE employees
 SET salary = salary + (salary * .025)
 WHERE CURRENT OF emp_sal_cur;

 END LOOP;

 -- Display the updated salaries
 FOR emp_sal_rec IN emp_sal_cur LOOP
 DBMS_OUTPUT.PUT_LINE('New Salary: ' || emp_sal_rec.last_name ||
 ' - ' || emp_sal_rec.salary);
 END LOOP;
END;

An update on the EMPLOYEES table occurs with each iteration of the loop. The second loop in this

example simply displays the new salary result for each employee that was returned by the cursor query.

How It Works
Updating values when iterating a cursor can be handy, especially when working with a number of rows.
There is one main difference between a cursor that allows updating and one that does not. That
difference is the addition of the FOR UPDATE clause in the cursor declaration. By using the FOR UPDATE
clause of the SELECT statement, you are causing the database to lock the rows that have been read by the

CHAPTER 2 ESSENTIAL SQL

34

query. This lock is to ensure that nobody else can modify the rows while you are working with them. The
lock creates a read-only block on the table rows so that if someone else attempts to modify them while
you have them locked, then they will have to wait until you have performed either a COMMIT or a ROLLBACK.

The FOR UPDATE clause has an optional NOWAIT keyword. By including this keyword, you will ensure
that your query does not block your transaction if someone else already has the rows that you are
querying blocked. The NOWAIT keyword tells Oracle not to wait if the requested rows are already locked,
and control is immediately passed back to your program so that it can continue to run. If the NOWAIT
keyword is omitted and the rows are already locked, then your program will stop and wait until the lock
has been released.

You can use the cursor with any style of loop, as you’ve seen in previous recipes. No matter which
type of loop you choose, the UPDATE must be coded using the WHERE CURRENT OF clause to update the
current row in the cursor iteration. You will need to be sure to commit the changes after this block has
been run, and in many circumstances the COMMIT statement can be coded into this block once it has been
tested and verified to work correctly. As with any UPDATE statement, if you fail to COMMIT your changes,
then the UPDATE will not save any changes to the database, and the updated data will be visible to your
schema only until you disconnect. Issuing a COMMIT after your UPDATE statements have been issued is also
a good practice in this case because it will release the lock on the rows you had queried via the cursor so
that someone else can update them if needed. If you determine the data that was updated by the code
block is incorrect, then a ROLLBACK will also release the lock.

2-11. Deleting Rows Returned by a Cursor

Problem
There are a series of database rows that you’d like to delete. You’ve created a cursor FOR LOOP, and you
want to delete some or all rows that have been queried with the cursor.

Solution
Use a DELETE statement within a FOR loop to delete the rows that are retrieved by the cursor. If you create
a cursor using the FOR UPDATE clause, then you will be able to use the WHERE CURRENT OF clause along with
the DELETE statement to eliminate the current row within each iteration of the cursor. The following
example shows how this can be done to remove all job history for a given department ID:

CREATE OR REPLACE PROCEDURE remove_job_history(dept_id IN NUMBER) AS
 CURSOR job_history_cur IS
 SELECT *
 FROM job_history
 WHERE department_id = dept_id
 FOR UPDATE;

 job_history_rec job_history_cur%ROWTYPE;

 BEGIN

 FOR job_history_rec IN job_history_cur LOOP

 DELETE FROM job_history
 WHERE CURRENT OF job_history_cur;

 CHAPTER 2 ESSENTIAL SQL

35

 DBMS_OUTPUT.PUT_LINE('Job history removed for department ' ||
 dept_id);
 END LOOP;
END;

Using this technique, the job history for the department with the given ID will be removed from the

JOB_HISTORY table.

How It Works
Much like updating rows using a cursor, the deletion of rows uses the WHERE CURRENT OF clause within
the DELETE statement to remove each row. The cursor query must contain the FOR UPDATE clause in order
to lock the rows that you are reading until a COMMIT or ROLLBACK has been issued. As mentioned in the
previous recipe, the NOWAIT keyword is optional, and it can be used to allow control to be immediately
returned to your program if someone else already has locks on the rows that you are interested in
updating.

In each iteration of the loop, the DELETE statement is used along with the WHERE CURRENT OF clause to
remove the current cursor record from the database. Once the loop has been completed, then all the
rows that had been queried via the cursor should have been deleted. This technique is especially useful if
you are going to be performing some further processing on each of the records and then deleting them.
One such case would be if you wanted to write each of the records to a history table prior to deleting
them. In any case, the cursor FOR loop deletion technique is a great way to remove rows from the
database and work with the data along the way.

2-12. Performing a Transaction

Problem
You need to complete a series of INSERT or UPDATE statements in order to process a complete transaction.
In doing so, you need to ensure that if one of the statements fails, that all of the statements are canceled
so that the transaction is not partially processed.

Solution
Use the transaction control mechanisms that are part of PL/SQL, as well as SQL itself, in order to control
your transactions. When all your statements have been completed successfully, issue a COMMIT to make
them final. On the other hand, if one of the statements does not complete successfully, then perform a
ROLLBACK to undo all the other changes that have been made and bring the database back to the state
that it was in prior to the transaction occurring.

In the following example, the code block entails the body of a script that is to be executed in order to
create a new department and add some employees to it. The department change involves an INSERT and
UPDATE statement to complete.

DECLARE

 -- Query all programmers who make more than 4000
 -- as they will be moved to the new 'Web Development' department
 CURSOR new_dept_cur IS
 SELECT *
 FROM employees

CHAPTER 2 ESSENTIAL SQL

36

 WHERE job_id = 'IT_PROG'
 AND salary > 4000
 FOR UPDATE;

 new_dept_rec new_dept_cur%ROWTYPE;
 current_department departments.department_id%TYPE;

BEGIN

 -- Create a new department
 INSERT INTO departments values(
 DEPARTMENTS_SEQ.nextval, -- Department ID (sequence value)
 'Web Development', -- Department Title
 103 -- Manager ID
 1700); -- Location ID

 -- Obtain the current department ID…the new department ID
 SELECT DEPARTMENTS_SEQ.currval
 INTO current_department
 FROM DUAL;

 -- Assign all employees to the new department
 FOR new_dept_rec IN new_dept_cur LOOP

 UPDATE employees
 SET department_id = current_department
 WHERE CURRENT OF new_dept_cur;

 END LOOP;

 COMMIT;
 DBMS_OUTPUT.PUT_LINE('The transaction has been successfully completed.');

END;

As you can see, a transaction was performed in this block of code. It is important to roll back

changes if errors occur along the way so that the transaction is not partially completed.

How It Works
Transaction control is built into the Oracle Database. Any database changes that are made within a code
block are visible to the current session only until a COMMIT has been made. The changes that have been
made by the statements can be rolled back via the ROLLBACK command up until the point that a COMMIT is
issued. Oracle uses table and row locks to ensure that data that has been updated in one session cannot
be seen in another session until a COMMIT occurs.

A transaction is started when the first statement after the last COMMIT or ROLLBACK is processed or
when a session is created. It ends when a COMMIT or ROLLBACK occurs. A transaction is not bound to a
single code block, and any code block may contain one or more transactions. Oracle provides a
SAVEPOINT command, which places a marker at the current database state so as to allow you to roll back
to that point in time in a transaction. Oracle Database automatically issues a SAVEPOINT prior to
processing the first statement in any transaction.

 CHAPTER 2 ESSENTIAL SQL

37

As a rule of thumb, it is always a good idea to have exception handling in place in case an exception
occurs. However, if an unhandled exception occurs, then the database will roll back the statement that
caused the exception, not the entire transaction. Therefore, it is up to the program to handle exceptions
and issue the ROLLBACK command if the entire transaction should be undone. If a database crashes and
goes down during a transaction, then when the database is restarted, all uncommitted statements are
rolled back. All transactions are completed when a COMMIT or ROLLBACK is issued.

2-13. Ensuring That Multiple Queries “See” the Same Data

Problem
You are issuing a set of queries against the database, and you need to ensure that none of the table rows
change throughout the course of the queries being made.

Solution
Set up a read-only transaction in which the current transaction will see the data only as an unchanged
snapshot in time. To do so, use the SET TRANSACTION statement to begin a read-only transaction and
establish a snapshot of the data so it will be consistent and unchanged from all other updates being
made. For instance, the following example displays a block that sets up read-only queries against the
database for dollar values from a bank account:

DECLARE
 daily_atm_total NUMBER(12,2);
 weekly_atm_total NUMBER(12,2);
BEGIN
 COMMIT; -- ends previous transaction
 SET TRANSACTION READ ONLY NAME 'ATM Weekly Summary';
 SELECT SUM (wd_amt) INTO daily_atm_total FROM atm_withdrawals
 WHERE to_char(wd_date, 'MM-DD-YYYY') = to_char(SYSDATE, 'MM-DD-YYYY');
 SELECT SUM (weekly_total) INTO weekly_atm_total FROM atm_withdrawals
 WHERE to_char(wd_date, 'MM-DD-YYYY') = to_char(SYSDATE - 7, 'MM-DD-YYYY');
 DBMS_OUTPUT.PUT_LINE(daily_atm_total || ' - ' || weekly_atm_total);
 COMMIT; -- ends read-only transaction

END;

Querying the database using read-only transactions will ensure that someone will see the correct

values in a situation such as the one depicted in this example.

How It Works
Oftentimes there are situations when you need to ensure that the data being queried throughout a
transaction’s life cycle is unchanged by other users’ updates. The classic case is when someone goes to
withdraw money from the bank and their spouse is at an ATM machine depositing into the account at
the same time. If read consistency were not in place, the individual may view their account balance and
see that there was plenty of money to withdraw, and then they’d go to take the money out and receive an
error because the spouse had canceled the deposit instead. A read-only transaction allows for read
consistency until a COMMIT has been issued. If the spouse had confirmed the deposit, then the next query

CHAPTER 2 ESSENTIAL SQL

38

on the account would reflect the additional funds (assuming that the bank were to release them to the
account in real time).

Situations such as these require that you provide an environment that is essentially isolated from
the outside world. You can use the SET TRANSACTION command to start a read-only transaction, set an
isolation level, and assign the current transaction to a rollback segment. The SET TRANSACTION statement
must be the first statement in a read-only transaction, and it can appear only once in the transaction.
Note that there are some statement restrictions when using a read-only transaction. Only SELECT INTO,
OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT, and ROLLBACK statements can be used; other statements are not
allowed.

2-14. Executing One Transaction from Within Another

Problem
You are executing a transaction, and you are faced with the need to suspend your current work, issue a
completely separate transaction, and then pick up your current work. For example, say you want to log
entries into a log table. The log entries should be persisted separately from the current transaction such
that if the transaction fails or is rolled back, the log entries will still be completed.

Solution
Start an autonomous transaction to make the log entry. This will ensure that the log entry is performed
separately from the current transaction. In the following example, an employee is deleted from the
EMPLOYEES table. Hence, a job is ended, and the job history must be recorded into the JOB_HISTORY table.
In the case that something fails within the transaction, the log entry into the JOB_HISTORY table must be
intact. This log entry cannot be rolled back because it is performed using an autonomous transaction.

The code to encapsulate the autonomous transaction needs to be placed into a named block that
can be called when the logging needs to be performed. The following piece of code creates a PL/SQL
procedure that performs the log entry using an autonomous transaction. (You will learn more about
procedures in Chapter 4.) Specifically notice the declaration of PRAGMA AUTONOMOUS_TRANSACTION. That
pragma specifies that the procedure executes as a separate transaction, independent of any calling
transaction.

CREATE OR REPLACE PROCEDURE log_job_history (emp_id IN
employees.employee_id%TYPE,
Job_id IN jobs.job_id%TYPE,
Department_id IN employees.department_id%TYPE,
 employee_start IN DATE) AS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO job_history
 VALUES (emp_id,
 employee_start,
 sysdate,
 job_id,
 department_id);
 COMMIT;
END;

 CHAPTER 2 ESSENTIAL SQL

39

The LOG_JOB_HISTORY procedure inserts an entry into the log table separately from the transaction
that is taking place in the calling code block. The following code performs the job termination, and it
calls the log_substitution procedure to record the history:

DECLARE
 CURSOR dept_removal_cur IS
 SELECT *
 FROM employees
 WHERE department_id = 10
 FOR UPDATE;

 dept_removal_rec dept_removal_cur%ROWTYPE;

BEGIN
 -- Delete all employees from the database who reside in department 10
 FOR dept_removal_rec IN dept_removal_cur LOOP
 DBMS_OUTPUT.PUT_LINE('DELETING RECORD NOW');
 DELETE FROM employees
 WHERE CURRENT OF dept_removal_cur;

 -- Log the termination
 log_job_history(dept_removal_rec.employee_id,
 dept_removal_rec.job_id,
 dept_removal_rec.department_id,
 dept_removal_rec.hire_date);
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('The transaction has been successfully completed.');

EXCEPTION
 -- Handles all errors
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('The transaction has been rolled back due to errors, please try again.');

 ROLLBACK;

END;

If this code block is executed and then rolled back, the entry into the job history table remains,

because it is performed as a separate, autonomous transaction.

How It Works
An autonomous transaction is a transaction that is called by another transaction and that runs
separately from the calling transaction. Autonomous transactions commit or roll back without affecting
the calling transaction. They also have the full functionality of regular transactions; they merely run
separately from the main transaction. They allow parallel activity to occur. Even if the main transaction
fails or is rolled back, the autonomous transaction can be committed or rolled back independently of
any other transactions in progress.

CHAPTER 2 ESSENTIAL SQL

40

An autonomous transaction must be created with a top-level code block, trigger, procedure,
function, or stand-alone named piece of code. In the solution, you saw that a procedure was created to
run as an autonomous transaction. That is because it is not possible to create an autonomous
transaction within a nested code block. To name a transaction as autonomous, you must place the
statement PRAGMA AUTONOMOUS_TRANSACTION within the declaration section of a block encompassing the
transaction. To end the transaction, perform a COMMIT or ROLLBACK.

2-15. Finding and Removing Duplicate Table Rows

Problem
You have found that for some reason your database contains a table that has duplicate records. You are
working with a database that unfortunately does not use primary key values, so you must manually
enforce data integrity. You need a way to remove the duplicate records. However, any query you write to
remove one record will also remove its duplicate.

Solution
The solution to this issue involves two steps. First you need to query the database to find all duplicate
rows, and then you need to run a statement to delete one of each duplicate record that is found.

The following code block queries the EMPLOYEES table for duplicate rows. When a duplicate is found,
it is returned along with a count of duplicates found.

<<duplicate_emp_qry>>
DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM employees
 ORDER BY employee_id;

 emp_count number := 0;
 total_count number := 0;

BEGIN
 DBMS_OUTPUT.PUT_LINE('You will see each duplicated employee listed more ');
 DBMS_OUTPUT.PUT_LINE('than once in the list below. This will allow you to ');
 DBMS_OUTPUT.PUT_LINE('review the list and ensure that indeed...there are more ');
 DBMS_OUTPUT.PUT_LINE('than one of these employee records in the table.');

 DBMS_OUTPUT.PUT_LINE('Duplicated Employees: ');

-- Loop through each player in the table
 FOR emp_rec IN emp_cur LOOP

-- Select the number of records in the table that have the same ID as the current record
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE employee_id = emp_rec.employee_id;

 CHAPTER 2 ESSENTIAL SQL

41

-- If the count is greater than one then a duplicate has been found, so print it out.
 IF emp_count > 1 THEN
 DBMS_OUTPUT.PUT_LINE(emp_rec.employee_id || ' - ' || emp_rec.first_name ||
 ' ' || emp_rec.last_name || ' - ' || emp_count);
 total_count := total_count + 1;
 END IF;

 END LOOP;
END;

If the table includes a duplicate, then it is printed out as follows:

You will see each duplicated employee listed more
than once in the list below. This will allow you to
review the list and ensure that indeed...there are more
than one of these employees in the table.
Duplicated Employees:
100 - Steven King - 2
100 – Steven King - 2
PL/SQL procedure successfully completed.

Next, you need to delete the duplicated rows that have been found. The following DELETE statement

will ensure that one of the duplicates is removed:

DELETE FROM employees A WHERE ROWID > (
SELECT min(rowid) FROM employees B
WHERE A.employee_id = B.employee_id);

How It Works
Usually using primary keys prohibits the entry of duplicate rows into a database table. However, many
legacy databases still in use today do not include such constraints. In rare situations, a duplicate key and
values are entered into the database that can cause issues when querying data or assigning values. The
method shown in the solution for finding duplicate rows is very basic. The solution loops through each
record in the table, and during each pass, it queries the table for the number of records found that match
the current record’s EMPLOYEE_ID. If the number found is greater than one, then you know that you have
found a duplicate.

The solution presented here for finding duplicates will work on any table provided that you have a
column of data that should contain logically unique values. In the example, each record should contain a
different EMPLOYEE_ID, so if there is more than one record with the same EMPLOYEE_ID value, then a
duplicate is found. If the table you are working with does not contain any unique columns, then you can
concatenate a number of columns in order to obtain a unique combination. For instance, if EMPLOYEES
did not contain an EMPLOYEE_ID column, then you could concatenate the FIRST_NAME, LAST_NAME, and
EMAIL columns to obtain a unique combination. More likely than not, there will not be two employees in
the table with the same name and e-mail address.

The second part of the solution involves removing one or more duplicate records from the set. To do
so, you have to look at a pseudocolumn known as the ROWID. The ROWID is a pseudocolumn (invisible
column) that is found in each table in an Oracle Database that uniquely identifies each row. By
comparing these unique ROWID values, you can delete just one of the records, not both. The DELETE
statement actually finds the rows that contain the same uniquely identified column(s) and then removes
the row with the larger ROWID value.

C H A P T E R 3

43

Looping and Logic

Any substantial program always contains some conditional logic or looping. Oftentimes, both looping
and logic are combined to make powerful solutions. The recipes in this chapter will show you some
examples using basic conditional logic. Once you’ve mastered the art of conditional logic, then you will
learn how to perform all the loop types that are available in PL/SQL. Lastly, you will see some useful
examples that put these concepts into action.

For the purposes of this chapter, it is important to note that a condition is any variable or expression
that evaluates to a boolean. Conditions can contain one or more variables or expressions, but they must
always evaluate to either TRUE, FALSE, or NULL.

3-1. Choosing When to Execute Code

Problem
Your code contains a condition, and you are interested in executing code to perform specific actions if
the condition evaluates to TRUE, FALSE, or NULL.

Solution
Use an IF-THEN statement to evaluate an expression (or condition) and determine which code to execute
as a result.

The following example depicts a very simple IF-THEN statement that evaluates one variable to see
whether it contains a larger value than another variable. If so, then the statements contained within the
IF-THEN statement are executed; otherwise, they are ignored.

DECLARE
 value_one NUMBER := &value_one;
 value_two NUMBER := &value_two;
BEGIN
 IF value_one > value_two THEN
 DBMS_OUTPUT.PUT_LINE('value_one is greater than value_two');
 END IF;
END;

As you can see from the example, if value_one is greater than value_two, a line of output will be

printed stating so. Otherwise, the IF statement is bypassed, and processing continues.

How It Works
As shown in the solution, the general format for the IF-THEN statement is as follows:

CHAPTER 3 LOOPING AND LOGIC

44

IF condition THEN
 Statements to be executed
 …
END IF;

The IF-THEN statement is one of the most frequently used conditional statements. If a given

condition evaluates to TRUE, then the code contained within the IF-THEN statement is executed. If the
condition evaluates to FALSE or NULL, then the statement is exited. However, it is possible to incorporate a
different set of statements if the condition is not satisfied. Please see Recipe 3-2 for an example.

Any number of IF-THEN statements can be nested within one another. The statements within the IF-
THEN will be executed if the condition that is specified evaluates to TRUE.

3-2. Choosing Between Two Mutually Exclusive Conditions

Problem
You have two conditions that are mutually exclusive. You want to execute one set of statements if the
first condition evaluates to TRUE. Otherwise, if the first condition is FALSE or NULL, then execute a different
set of statements.

Solution
Use an IF-ELSE statement to evaluate the condition and execute the statements that correspond to it if
the condition evaluates to TRUE. In the following example, a given employee ID is used to query the
EMPLOYEES table. If that employee exists, then the employee record will be retrieved. If not found, then a
message will be displayed stating that no match was found.

DECLARE
 employee employees%ROWTYPE;
 emp_count number := 0;
BEGIN
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE employee_id = 100;

 IF emp_count > 0 THEN
 SELECT *
 INTO employee
 FROM employees
 WHERE employee_id = 100;

 IF employee.manager_id IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE(employee.first_name || ' ' || employee.last_name ||
 ' has an assigned manager.');
 ELSE
 DBMS_OUTPUT.PUT_LINE(employee.first_name || ' ' || employee.last_name ||
 ' does not have an assigned manager.');
 END IF;

 CHAPTER 3 LOOPING AND LOGIC

45

 ELSE
 DBMS_OUTPUT.PUT_LINE('The given employee ID does not match any records, '||
 ' please try again');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Try another employee ID.');
END;

Here are the results:

Steven King does not have an assigned manager.

PL/SQL procedure successfully completed.

In the real world, the employee ID would not be hard-coded into the example. However, this

example provides a good scenario for evaluating mutually exclusive conditions and also nesting IF
statements.

How It Works
The IF-ELSE statement syntax is basically the same as the IF-THEN syntax, except that a different set of
statements is executed in the ELSE clause when the condition evaluates to FALSE or NULL. Therefore, if the
first condition is FALSE or NULL, then the control automatically drops down into the statements contained
within the ELSE clause and executes them.

3-3. Evaluating Multiple Mutually Exclusive Conditions

Problem
Your application has multiple conditions to evaluate, and each of them is mutually exclusive. If one of
the conditions evaluates to FALSE, you’d like to evaluate the next one. You want that process to continue
until there are no more conditions.

Two solutions are possible: one using IF and the other using CASE.

Solution #1
Use an IF-ELSIF-ELSE statement to perform an evaluation of all mutually exclusive conditions. The
following example is a SQL*Plus script that queries how many countries are in a specified region.

■ Note The following example uses SQL*Plus substitution variables. Be sure to execute the example from an

environment such as SQL*Plus or SQL Developer that recognizes such variables.

CHAPTER 3 LOOPING AND LOGIC

46

If the region that is typed as input when the following example executes matches any of the regions
specified by the conditions in the IF statement, then subsequent statements are executed. However, a
default message is displayed if the input does not match any region.

DECLARE
 Region regions.region_name%TYPE := '®ion';
 country_count number := 0;
BEGIN

 IF upper(region) = 'EUROPE' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 1;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Europe region.');
 ELSIF upper(region) = 'AMERICAS' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 2;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Americas region.');
 ELSIF upper(region) = 'ASIA' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 3;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Asia region.');
 ELSIF upper(region) = 'MIDDLE EAST AND AFRICA' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 4;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Middle East and Africa region.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('You have entered an invaid region, please try again');
 END IF;

END;

Solution #2
You can use the searched CASE statement to evaluate a boolean expression to determine which
statements to execute among multiple, mutually exclusive conditions. The next example is a SQL*Plus
script that performs the same tasks as Solution #1 but this time using a searched CASE statement:

 CHAPTER 3 LOOPING AND LOGIC

47

DECLARE
 region regions.region_name%TYPE := '®ion';
 country_count number := 0;
BEGIN

 CASE
 WHEN upper(region) = 'EUROPE' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 1;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Europe region.');
 WHEN upper(region) = 'AMERICAS' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 2;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Americas region.');
 WHEN upper(region) = 'ASIA' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 3;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Asia region.');
 WHEN upper(region) = 'MIDDLE EAST AND AFRICA' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 4;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Middle East and Africa region.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('You have entered an invaid region, please try again');
 END CASE;

END;

How It Works
IF-ELSIF-ELSE can be used to evaluate any number of conditions. It functions such that if the first
condition in the IF-ELSIF-ELSE statement evaluates to TRUE, then the statements within its block are
executed, and all others are bypassed. Similarly, if the first condition evaluates to FALSE and the second
condition evaluates to TRUE, then the second condition’s statements will be executed, others will be
ignored, and so on.

CHAPTER 3 LOOPING AND LOGIC

48

Like the IF-ELSE statement, you can include an ELSE clause that will cause a set of statements to be
executed if none of the conditions is met. If you do not include an ELSE clause on your IF statement and
none of the conditions is met, then the entire statement will be completely bypassed.

The second solution to this recipe entails the use of a searched CASE statement. Technically, the
searched CASE has the same functionality of an IF-ELSIF-ELSE statement, but it is oftentimes easier to
follow. The format for a searched CASE statement is as follows:

CASE
 WHEN <<boolean_expression>> THEN <<statements>>
[ELSE statements];

In this statement, a boolean expression is evaluated, and if the result is TRUE, then the statements

following THEN will be executed. Otherwise, execution will continue to the next WHEN clause in the
statement. If there are no boolean expressions within the CASE statement that evaluate to TRUE, then the
statements contained within the optional ELSE clause are executed.

3-4. Driving from an Expression Having Multiple Outcomes

Problem
You have a single expression that yields multiple outcomes. You are interested in evaluating the
expression and performing a different set of statements depending upon the outcome.

Solution
Use a CASE statement to evaluate your expression, and decide which set of statements to execute
depending upon the outcome. In the following example, a SQL*Plus script accepts a region entry, which
is being evaluated to determine the set of statements to be executed. Based upon the value of the region,
the corresponding set of statements is executed, and once those statements have been executed, then
the control is passed to the statement immediately following the CASE statement.

DECLARE
 region regions.region_name%TYPE := '®ion';
 country_count number := 0;
BEGIN

 CASE upper(region)
 WHEN 'EUROPE' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 1;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Europe region.');
 WHEN 'AMERICAS' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 2;

 CHAPTER 3 LOOPING AND LOGIC

49

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Americas region.');
 WHEN 'ASIA' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 3;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Asia region.');
 WHEN 'MIDDLE EAST AND AFRICA' THEN
 SELECT count(*)
 INTO country_count
 FROM countries
 WHERE region_id = 4;

 DBMS_OUTPUT.PUT_LINE('There are ' || country_count || ' countries in ' ||
 'the Middle East and Africa region.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('You have entered an invaid region, please try again');
 END CASE;

END;

How It Works
There are two different types of CASE statements that can be used—those being the searched CASE and
the simple CASE statement. The solution to this recipe demonstrates the simple CASE. For an example of a
searched CASE statement, please see Recipe 3-3.

The simple CASE statement begins with the keyword CASE followed by a single expression called a
selector. The selector is evaluated one time, and it can evaluate to any PL/SQL type other than BLOB,
BFILE, an object type, a record, or a collection type. The selector is followed by a series of WHEN clauses.
The WHEN clauses are evaluated sequentially to determine whether the value of the selector equals the
result from any of the WHEN clause expressions. If a match is found, then the corresponding WHEN clause is
executed.

The CASE statement can include any number of WHEN clauses, and much like an IF statement, it can
be followed with a trailing ELSE clause that will be executed if none of the WHEN expressions matches. If
the ELSE clause is omitted, a predefined exception will be raised if the CASE statement does not match
any of the WHEN clauses. The END CASE keywords end the statement.

3-5. Looping Until a Specified Condition Is Met

Problem
You want to loop through a set of statements until a specified condition evaluates to true.

CHAPTER 3 LOOPING AND LOGIC

50

Solution
Use a simple LOOP statement along with an EXIT clause to define a condition that will end the iteration.
The following example shows a simple LOOP that will print out each employee with a department_id equal
to 90:

DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM employees
 WHERE department_id = 90;
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cur;
 LOOP
 FETCH emp_cur into emp_rec;
 IF emp_cur%FOUND THEN
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 ' - ' || emp_rec.email);
 ELSE
 EXIT;
 END IF;
 END LOOP;
 CLOSE emp_cur;
END;

As you can see from the example, the cursor is opened prior to the start of the loop. Inside the loop,
the cursor is fetched into emp_rec, and emp_rec is evaluated to see whether it contains anything using the
cursor %FOUND attribute. If emp_cur%FOUND is FALSE, then the loop is exited using the EXIT keyword.

How It Works
The simple LOOP structure is very easy to use for generating a loop in your code. The LOOP keyword is used
to start the loop, and the END LOOP keywords are used to terminate it. Every simple loop must contain an
EXIT or GOTO statement; otherwise, the loop will become infinite and run indefinitely.

You can use a couple of different styles for the EXIT. When used alone, the EXIT keyword causes a
loop to be terminated immediately, and control is passed to the first statement following the loop. You
can use the EXIT-WHEN statement to terminate the loop based upon the evaluation of a condition after the
WHEN statement. If the condition evaluates to TRUE, then the loop is terminated; otherwise, it will
continue.

The following example shows the same LOOP as the example in the solution, but instead of using an
IF statement to evaluate the content of emp_rec, the EXIT-WHEN statement is used:

DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM employees
 WHERE department_id = 90;
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cur;

 CHAPTER 3 LOOPING AND LOGIC

51

 LOOP
 FETCH emp_cur into emp_rec;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 ' - ' || emp_rec.email);
 END LOOP;
 CLOSE emp_cur;
END;

You can use a loop to iterate over any number of things including cursors or collections of data. As

you will see in some of the coming recipes, different forms of loops work better in different
circumstances.

3-6. Iterating Cursor Results Until All Rows Have Been Returned

Problem
You have created a cursor and retrieved a number of rows from the database. As a result, you want to
loop through the results and do some processing on them.

Solution
Use a standard FOR loop to iterate through the records. Within each iteration of the loop, process the
current record. The following code shows the use of a FOR loop to iterate through the records retrieved
from the cursor and display each employee name and e-mail. Each iteration of the loop returns an
employee with the job_id of 'ST_MAN', and the loop will continue to execute until the cursor has been
exhausted.

DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM employees
 WHERE job_id = 'ST_MAN';
 emp_rec employees%ROWTYPE;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 ' - ' || emp_rec.email);
 END LOOP;
END;

Here are the results:

Matthew Weiss - MWEISS
Adam Fripp - AFRIPP
Payam Kaufling - PKAUFLIN
Shanta Vollman - SVOLLMAN
Kevin Mourgos - KMOURGOS

PL/SQL procedure successfully completed.

CHAPTER 3 LOOPING AND LOGIC

52

As you can see, the employee records that meet the specified criteria are displayed.

How It Works
The FOR...IN loop works by iterating over a collection of data such as a cursor. The loop begins with the
FOR keyword followed by a variable that will be used to contain the current value or values from the
collection of data you are iterating. In this case, the variable is a record that will contain the current row.
Next, the IN collection clause is used to denote the collection of data being iterated. The loop is
terminated just like all other PL/SQL loops, using the END LOOP keywords. There is no need to evaluate a
condition in a FOR loop because the collection or range that is used to define the loop determines its
scope. However, it is possible to use the EXIT keyword to escape from a loop prematurely. For more
information regarding the use of EXIT, please see Recipe 3-5.

The benefit of using a FOR loop is decreased lines of code and better readability. Rather than opening
the cursor prior to the loop, fetching a row into a record with each iteration, and then closing the cursor
after the loop, you simply fetch the row into the record within the LOOP definition itself.

3-7. Iterating Until a Condition Evaluates to FALSE

Problem
You want to iterate over a series of statements until a specified condition no longer evaluates to TRUE.

Solution
Use a WHILE statement to test the condition, and execute the series of statements if the condition
evaluates to TRUE; otherwise, skip the statements completely. The following example shows a WHILE
statement evaluating the current value of a variable and looping through until the value of the variable
reaches ten. Within the loop, this variable is being multiplied by two and printing out its current value.

DECLARE
 myValue NUMBER := 1;
BEGIN
WHILE myValue < 10 LOOP
 DBMS_OUTPUT.PUT_LINE('The current value is: ' || myValue);
 myValue := myValue * 2;
 END LOOP;
END;

Here are the results:

The current value is: 1
The current value is: 2
The current value is: 4
The current value is: 8

PL/SQL procedure successfully completed.

The important thing to note in this example is that the value of myValue is increased with each

iteration of the loop as to eventually meet the condition specified in the WHILE loop.

 CHAPTER 3 LOOPING AND LOGIC

53

How It Works
The WHILE loop tests a condition at the top of the loop, and if it evaluates to TRUE, then the statements
within the loop are executed, and control is returned to the start of the loop where the condition is tested
again. If the condition does not evaluate to TRUE, the loop is bypassed, and control goes to the next
statement after the END LOOP. If the condition never fails, then an infinite loop is formed, so it is
important to ensure that the condition will eventually evaluate to FALSE.

It is important to note that the statements in the loop will never be executed if the condition
evaluates to FALSE during the first pass. This situation is different from the simple loop that always
iterates at least once because the EXIT condition is usually evaluated elsewhere in the loop.

To ensure that a WHILE loop is always executed at least one time, you must ensure that the condition
evaluates to TRUE at least once. One way to do this is to use a flag variable that is evaluated with each
iteration of the loop. Set the flag equal to FALSE prior to starting the loop, and then set it to TRUE when a
certain condition is met inside the loop. The following pseudocode depicts such a solution:

BEGIN
 flag = FALSE;
 WHILE flag = TRUE LOOP
 Perform statements
 flag = Boolean expression;
 END LOOP;
END;

As mentioned previously, the boolean expression that is assigned to the flag in this case must

eventually evaluate to FALSE; otherwise, an infinite loop will occur.

3-8. Bypassing the Current Loop Iteration

Problem
If a specified conditional statement evaluates to TRUE, you want to terminate the current loop iteration of
the loop early and start the next iteration immediately.

Solution
Use a CONTINUE statement along with a condition to end the current iteration.

In the following example, a loop is used to iterate through the records in the employees table. The
primary reason for the loop is to print out a list of employees who receive a salary greater than 15,000. If
an employee does not receive more than 15,000, then nothing is printed out, and the loop continues to
the next iteration.

DECLARE
 CURSOR emp_cur is
 SELECT *
 FROM employees;

 emp_rec emp_cur%ROWTYPE;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Employees with salary > 15000: ');

CHAPTER 3 LOOPING AND LOGIC

54

 OPEN emp_cur;
 LOOP
 FETCH emp_cur INTO emp_rec;
 EXIT WHEN emp_cur%NOTFOUND;
 IF emp_rec.salary < 15000 THEN
 CONTINUE;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee: ' || emp_rec.first_name || ' ' ||
 emp_rec.last_name);
 END IF;

 END LOOP;
 CLOSE emp_cur;

END;

Here are some sample results:

Employees with salary > 15000:
Employee: Steven King
Employee: Neena Kochhar
Employee: Lex De Haan

PL/SQL procedure successfully completed.

How It Works
You can use the CONTINUE statement in any loop to unconditionally halt execution of the current iteration
of the loop and move to the next. As shown in the solution, the CONTINUE statement is usually
encompassed within some conditional statement so that it is invoked only when that certain condition
is met.

You can use the CONTINUE statement along with a label in order to jump to a specified point in the
program. Rather than merely using CONTINUE to bypass the current loop iteration, specifying a label will
allow you to resume programming in an outer loop. For more information regarding the use of the
CONTINUE statement along with labels in nested loops, please see Recipe 3-13.

As an alternative to specifying CONTINUE from within an IF statement, you can choose to write a
CONTINUE WHEN statement. For example, the following two approaches yield identical results:

 IF team_rec.total_points < 10 THEN
 CONTINUE;

or

 CONTINUE WHEN rec.total_points < 10;

Using the CONTINUE WHEN format, the loop will stop its current iteration if the condition in the WHEN

clause is met. Otherwise, the iteration will ignore the statement altogether.

 CHAPTER 3 LOOPING AND LOGIC

55

3-9. Iterating a Fixed Number of Times

Problem
You are interested in executing the contents of a loop a specified number of times. For example, you are
interested in executing a loop ten times, and you need to number each line of output in the range by the
current loop index.

Solution
Write a FOR loop. Use a variable to store the current index of the loop while looping through a range of
numbers from one to ten in ascending order. The following lines of code will iterate ten times through a
loop and print out the current index in each pass:

BEGIN
 FOR idx IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE('The current index is: ' || idx);
 END LOOP;
END;

Here is the result:

The current index is: 1
The current index is: 2
The current index is: 3
The current index is: 4
The current index is: 5
The current index is: 6
The current index is: 7
The current index is: 8
The current index is: 9
The current index is: 10

PL/SQL procedure successfully completed.

How It Works
The FOR loop will increment by one through the given range for each iteration until it reaches the end.
The loop is opened using the keyword FOR, followed by a variable that will be used as the index for the
loop. Following the index variable is the IN keyword, which is used to signify that the index variable
should increment one by one through the given range, which is listed after the IN keyword. The loop is
terminated using the END LOOP keywords.

Each statement contained within the loop is executed once for each iteration of the loop. The index
variable can be used within the loop, but it cannot be changed. As shown in the solution, you may use
the index for printing purposes, and it is oftentimes used in calculations as well.

CHAPTER 3 LOOPING AND LOGIC

56

3-10. Iterating Backward Through a Range

Problem
You are working with a range of numbers and want to iterate backward through the range, from the
upper bound to the lower bound.

Solution
Use a FOR loop along with the REVERSE keyword to iterate backward through the range. In this example,
the same solution that was shown in Recipe 3-9 has been modified to iterate backward through the
range of numbers.

BEGIN
 FOR idx IN REVERSE 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE('The current index is: ' || idx);
 END LOOP;
END;

Here is the result:

The current index is: 10
The current index is: 9
The current index is: 8
The current index is: 7
The current index is: 6
The current index is: 5
The current index is: 4
The current index is: 3
The current index is: 2
The current index is: 1

PL/SQL procedure successfully completed.

How It Works
The REVERSE keyword causes a FOR loop to iterate backward through the specified range of numbers. This
is the only way to loop backward through a sequence of numbers because it is not possible to simply list
the numbers in a different order to loop a different direction.

For example, the following loop would never be executed since the lower bound and upper bound
values have been swapped:

BEGIN
 FOR idx IN 10..1 LOOP
 --These statements will never be executed
 END LOOP;
END;

 CHAPTER 3 LOOPING AND LOGIC

57

The REVERSE keyword should be placed directly after the IN keyword and before the range that you
specify. The REVERSE keyword has no effect when working with cursors. If you need to iterate through
cursor results in a specific order, then specify an ORDER BY clause in your SELECT statement.

3-11. Iterating in Increments Other Than One

Problem
Rather than iterating through a range of numbers one at a time, you want to increment by some other
value. For example, you might want to increment through even values such as 2, 4, 6, and so forth.

Solution
Multiply the loop index by two (or by whatever other multiplier you need) to achieve the effect of
incrementing through all even numbers. As you can see in the following example, an even number is
always generated when the index is multiplied by two:

BEGIN
 FOR idx IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE('The current index is: ' || idx*2);
 END LOOP;
END;

Here is the result:

The current index is: 2
The current index is: 4
The current index is: 6
The current index is: 8
The current index is: 10

PL/SQL procedure successfully completed.

How It Works
Unlike some other languages, PL/SQL does not include a STEP clause that can be used while looping. To
work around that limitation, you will need to write your own stepping algorithm. In the solution to this
recipe, you can see that the algorithm was quite easy; you simply multiply the index by two to achieve
the desired result. In this solution, assigning the range of 1..5 as the index produces the effect of iterating
through all even numbers from 2..10 when the current index is multiplied by two.

Using similar techniques, you can increment through ranges of numbers in various intervals.
However, sometimes this can become troublesome if you are attempting to step by anything other than
even numbers. You can see an example of this in the next recipe.

CHAPTER 3 LOOPING AND LOGIC

58

3-12. Stepping Through a Loop Based on Odd-Numbered Increments

Problem
Rather than iterating through a range of numbers by even increments, you prefer to loop through the
range using odd increments.

Solution
Use the built-in MOD function to determine whether the current index is odd. If it is odd, then print out
the value; otherwise, continue to the next iteration. The following example shows how to implement this
solution:

BEGIN
 FOR idx IN 1..10 LOOP
 IF MOD(idx,2) != 0 THEN
 DBMS_OUTPUT.PUT_LINE('The current index is: ' || idx);
 END IF;
 END LOOP;
END;

Results:

The current index is: 1
The current index is: 3
The current index is: 5
The current index is: 7
The current index is: 9

PL/SQL procedure successfully completed.

How It Works
The solution depicts one possible workaround for a STEP replacement. Using the MOD function to
determine whether a number is odd works quite well. The MOD function, otherwise known as the modulus
function, is used to return the remainder from the division of the two numbers that are passed into the
function. Therefore, this function is useful for determining even or odd numbers. In this case, if any
value is returned from MOD, then the number is assumed to be odd, and the statements within the IF
statement will be executed.

Such a technique may be useful in the case of iterating through a collection of data such as a table. If
you want to grab every other record from the collection, then performing a stepping solution such as this
or the solution from Recipe 3-11 will allow you to achieve the desired result. You could easily use the
resulting index from this technique as the index for a collection.

 CHAPTER 3 LOOPING AND LOGIC

59

3-13. Exiting an Outer Loop Prematurely

Problem
Your code contains a nested loop, and you want the inner loop to have the ability to exit from both loops
and stop iteration completely.

Solution
Use loop labels for both loops and then reference either loop within an EXIT statement by following the
EXIT keyword with a loop label. The following example prints out a series of numbers. During each
iteration, the inner loop will increment until it reaches an odd number. At that point, it will pass control
to the outer loop again. The outer loop will be exited when the index for the inner loop is greater than or
equal to the number ten.

BEGIN
 <<outer>> for idx1 in 1 .. 10 loop
 <<inner>> for idx2 in 1 .. 10 loop
 dbms_output.put(idx2);
 exit inner when idx2 > idx1 * 2;
 exit outer when idx2 = 10;
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
END;

Results:

123
12345
1234567
123456789
12345678910

PL/SQL procedure successfully completed.

How It Works
Any loop in PL/SQL can be labeled using a similar style to labels for code blocks. The label can be any
valid identifier surrounded by angle brackets before the loop, and optionally the identifier can be placed
at the end after the END LOOP clause. The result of such a labeling mechanism is that you will have a
distinct start and end to the loops and more control over loop execution.

In the solution to this recipe, the label helps identify the outer loop so that it can be terminated with
the EXIT clause. Without a label, the EXIT will terminate the innermost FOR loop. However, the label can
also be used to help identify the loop’s index. In the solution, this is not necessary because the outer loop
index was named differently than the inner loop index. If both indexes were named the same, then you
could use the loop label along with the index name to fully qualify the index. The following example
demonstrates this technique:

CHAPTER 3 LOOPING AND LOGIC

60

BEGIN
 <<outer>> FOR idx IN 1 .. 10 LOOP
 <<inner>> FOR idx IN 1 .. 10 LOOP
 DBMS_OUTPUT.PUT(inner.idx);
 EXIT inner WHEN inner.idx > outer.idx * 2;
 EXIT outer WHEN inner.idx = 10;
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
END;

This code will display the same results as the example given in the solution to this recipe. The only
difference is that in this example the index name is the same in both the inner and outer loops. An
alternative technique to end the current iteration of an inner loop is to use the CONTINUE statement. A
CONTINUE statement can reference the label of a loop that is within the same scope. Therefore, an inner
loop can exit its current iteration and proceed to an outer loop, as the following example demonstrates:

BEGIN
 <<outer>> for idx1 in 1 .. 10 loop
 <<inner>> for idx2 in 1 .. 10 loop
 dbms_output.put(idx2);
 exit inner when idx2 > idx1 * 2;
 exit outer when idx2 = 10;
 END LOOP;
 CONTINUE outer;
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
END;

In this example, the same code that is used in the solution to this recipe is rewritten to incorporate a
CONTINUE statement. This statement is used to move control of execution back to the outer loop. When
the CONTINUE statement is reached, execution of the current loop is immediately halted, and processing
continues to the loop designated by the label.

3-14. Jumping to a Designated Location in Code

Problem
You want your code to stop executing and jump to a different, designated location.

Solution
Use a GOTO statement along with a label name to cause code execution to jump into the position where
the label is located.

The following example shows the GOTO statement in action. The user is prompted to enter a numeric
value, and that value is then evaluated to determine whether it is greater than ten. In either case, a
message is printed, and then the code jumps to the end_msg label. If the number entered is a negative
number, then the code jumps to the bad_input label where an error message is printed.

 CHAPTER 3 LOOPING AND LOGIC

61

DECLARE
 in_number number := 0;
BEGIN

 in_number := '&input_number';
 IF in_number > 10 THEN
 DBMS_OUTPUT.PUT_LINE('The number you entered is greater than ten');
 GOTO end_msg;
 ELSIF in_number <= 10 and in_number > 0 THEN
 DBMS_OUTPUT.PUT_LINE('The number you entered is less than or equal to ten');
 GOTO end_msg;
 ELSE
 -- Entered a negative number
 GOTO bad_input;
 END IF;

 << bad_input >>
 DBMS_OUTPUT.PUT_LINE('Invalid input. No negatives allowed.');

 << end_msg >>
 DBMS_OUTPUT.PUT_LINE('Thank you for playing..');

END;

How It Works
The GOTO statement is used to branch code unconditionally. Code can be branched to any label within
the same scope as the GOTO. In the solution, the GOTO statement causes the code to branch to a parent
code block. You could just as easily branch to a loop within the current or outer block. However, you
cannot branch to a label within a subblock, IF statement, or LOOP.
You should use this statement sparingly because arbitrary branching makes code difficult to read. Use
conditional statements to branch whenever possible, because that’s why they were put into the
language. As you can see from the solution, the same code could have been written printing the “Invalid
number” message within the ELSE clause. There are usually better alternatives to using GOTO.

C H A P T E R 4

63

Functions, Packages,
and Procedures

PL/SQL applications are composed of functions, procedures, and packages. Functions are PL/SQL
programs that accept zero or more parameters and always return a result. Procedures are similar to
functions, but they are not required to return a result. Packages are a combination of related functions,
procedures, types, and variables. Each of these PL/SQL components helps formulate the basis for small
and large applications alike. They differ from anonymous blocks that have been covered in previous
recipes because they are all named routines that are stored within the database. Together, they provide
the advantage of reusable code that can be called from any schema in the database to which you’ve
granted the appropriate access.

Let’s say you have a few lines of code that perform some calculations on a number and return a
result. Will these calculations help you anywhere else? If so, then you should probably encapsulate this
code in a function. Maybe you have a nightly script that you use as a batch job to load and execute.
Perhaps this script can be turned into a stored procedure and Oracle Scheduler can kick it off each night.
What about tasks that use more than one procedure or function? Can these be combined at all? A
PL/SQL package would probably be a good choice in this case. After reading through the recipes in this
chapter, you should be able to answer these questions at the drop of a hat.

■ Note We mention job scheduling in our introduction to this chapter. However, we actually address that topic in

Chapter 11, which is an entire chapter dedicated to running PL/SQL jobs, whether for application purposes or for

database maintenance.

4-1. Creating a Stored Function

Problem
One of your programs is using a few lines of code repeatedly for performing a calculation. Rather than
using the same lines of code numerous times throughout your application, it makes more sense to
encapsulate the functionality into a common routine that can be called and reused time and time again.

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

64

Solution
Create a stored function to encapsulate your code, and save it into the database. Once stored in the
database, any user with execution privileges can invoke the function. Let’s take a look at a function to
give you an idea of how they work.

In this example, the function is used to round a given number to the nearest quarter. This function
works well for accepting a decimal value for labor hours and rounding to the nearest quarter hour.

CREATE OR REPLACE FUNCTION CALC_QUARTER_HOUR(HOURS IN NUMBER) RETURN NUMBER AS
 CALCULATED_HOURS NUMBER := 0;
BEGIN

 -- if HOURS is greater than one, then calculate the decimal portion
• -- based upon quarterly hours
 IF HOURS > 1 THEN
 -- calculate the modulus of the HOURS variable and compare it to •
 -- fractional values
 IF MOD(HOURS, 1) <=.125 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1);
 ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
 ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
 ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.75,1);
 ELSE
 CALCULATED_HOURS := ROUND(HOURS,1);

 END IF;

 ELSE
 -- if HOURS is less than one, then calculate the entire value•
 -- based upon quarterly hours
 IF HOURS > 0 AND HOURS <=.375 THEN
 CALCULATED_HOURS := .25;
 ELSIF HOURS > .375 AND HOURS <= .625 THEN
 CALCULATED_HOURS := .5;
 ELSIF HOURS > .625 AND HOURS <= .825 THEN
 CALCULATED_HOURS := .75;
 ELSE
 CALCULATED_HOURS := ROUND(HOURS,1);
 END IF;

 END IF;

 RETURN CALCULATED_HOURS;

END CALC_QUARTER_HOUR;

This function accepts one value as input, a decimal value representing a number of hours worked.

The function then checks to see whether the value is greater than one, and if so, it performs a series of

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

65

manipulations to round the value to the nearest quarter hour. If the value is not greater than one, then
the function rounds the given fraction to the nearest quarter.

■ Note See Recipe 4-2 for an example showing the execution of this function.

How It Works
A function is a named body of code that is stored within the database and returns a value. Functions are
often used to encapsulate logic so that it can be reused. A function can accept zero or more parameters
and always returns a value. A function is comprised of a header, an execution section containing
statements, and an optional exception block.

For example, the header for our solution function is as follows:

CREATE OR REPLACE FUNCTION CALC_QUARTER_HOUR(HOURS IN NUMBER) RETURN NUMBER AS

The OR REPLACE clause is optional, but in practice it is something you’ll most always want. Specifying

OR REPLACE will replace a function that is already under the same name in the same schema. (A function
name must be unique within its schema.)

Functions can take zero or more parameters, which can be any datatype including collections. You
will learn more about collections in Chapter 10. Our example function takes one parameter, a NUMBER
representing some number of hours.

The parameters that can be passed to a function can be declared in three different ways, namely, as
IN, OUT, and IN OUT. The difference between these three declaration types is that parameters declared as
IN are basically read-only, OUT parameters are write-only, and IN OUT parameters are read-write. The
value of an OUT parameter is initially NULL but can contain a value after the function has returned.
Similarly, the value of an IN OUT can be modified within the function, but IN parameters cannot.

■ Note Typically you want only IN parameters for a function. If you find yourself creating a function with OUT or IN

OUT parameters, then reconsider and think about creating a stored procedure instead. This is not a hard-and-fast

requirement, but it is generally good practice for a function to return only one value.

The declaration section of the function begins directly after the header, and unlike the anonymous
block, you do not include the DECLARE keyword at the top of this section. Just like the anonymous block,
the declaration section is where you will declare any variables, types, or cursors for your function. Our
declaration section defines a single variable:

 CALCULATED_HOURS NUMBER := 0;

Following the declaration is the executable section, which is laid out exactly like that of an

anonymous block. The only difference with a function is that it always includes a RETURN statement. It
can return a value of any datatype as long as it is the same datatype specified in the RETURN clause of the
header.

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

66

Following the return clause can be an optional EXCEPTION block to handle any errors that were
encountered in the function. The following example is the same function that was demonstrated in the
solution to this recipe, except that it has an added EXCEPTION block.

CREATE OR REPLACE FUNCTION CALC_QUARTER_HOUR(HOURS IN NUMBER)
 RETURN NUMBER AS
 CALCULATED_HOURS NUMBER := 0;
BEGIN

 -- if HOURS is greater than one, then calculate the decimal portion

 -- based upon quarterly hours
 IF HOURS > 1 THEN
 -- calculate the modulus of the HOURS variable and compare it to

 -- fractional values
 IF MOD(HOURS, 1) <=.125 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1);
 ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
 ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
 ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.75,1);
 ELSE
 CALCULATED_HOURS := ROUND(HOURS,1);

 END IF;

 ELSE
 -- if HOURS is less than one, then calculate the entire value

 -- based upon quarterly hours
 IF HOURS > 0 AND HOURS <=.375 THEN
 CALCULATED_HOURS := .25;
 ELSIF HOURS > .375 AND HOURS <= .625 THEN
 CALCULATED_HOURS := .5;
 ELSIF HOURS > .625 AND HOURS <= .825 THEN
 CALCULATED_HOURS := .75;
 ELSE
 CALCULATED_HOURS := ROUND(HOURS,1);
 END IF;

 END IF;

 RETURN CALCULATED_HOURS;

EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE('VALUE ERROR RAISED, TRY AGAIN');
 RETURN -1;
 WHEN OTHERS THEN

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

67

 DBMS_OUTPUT.PUT_LINE('UNK ERROR RAISED, TRY AGAIN');
 RETURN -1;
END CALC_QUARTER_HOUR;

Again, don’t fret if you are unfamiliar with how to handle exceptions, because they will be discussed

in detail later in the book. At this point, it is important to know that you have the ability to declare
exceptions that can be caught by code so that your program can process abnormalities or errors
accordingly.

Functions are important not only for encapsulation but also for reuse. As a matter of fact, the
function defined within the solution uses other built-in PL/SQL functions within them. There are entire
libraries that consist of functions that are helpful for performing various transactions. Functions are a
fundamental part of PL/SQL programming, just as they are in any other language. It is up to you to
ensure that your database is stocked with plenty of useful functions that can be used in your current and
future applications.

4-2. Executing a Stored Function from a Query

Problem
You want to invoke a function from an SQL query. For example, you want to take the quarter-hour
rounding function from Recipe 4-1 and invoke it on hourly values in a database table.

Solution
Write a query and invoke the function on values returned by the SELECT statement. In the following lines,
the function that was written in the previous recipe will be called. The results of calling the function from
within a query are as follows:

SQL> select calc_quarter_hour(.17) from dual;

CALC_QUARTER_HOUR(.17)

 .25

SQL> select calc_quarter_hour(1.3) from dual;

CALC_QUARTER_HOUR(1.3)

 1.25

How It Works
There are a few ways in which a function can be called, one of which is via a query. A function can be
executed inline via a SELECT statement, as was the case with the solution to this recipe. A function can
also be executed by assigning it to a variable within an anonymous block or another function/procedure.
Since all functions return a value, this works quite well. For instance, the following QTR_HOUR variable can
be assigned the value that is returned from the function:

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

68

DECLARE
 qtr_hour NUMBER;
BEGIN
 qtr_hour := calc_quarter_hour(1.3);
 DBMS_OUTPUT.PUT_LINE(qtr_hour);
END;

You can also execute a function as part of an expression. In the following statement, you can see

that TOTAL_HOURS is calculated by adding the bill total to the value returned from the function:

DECLARE
 total_hours NUMBER;
 hours NUMBER := 8;
BEGIN
 total_hours := hours + calc_quarter_hour(3.2);
 DBMS_OUTPUT.PUT_LINE(total_hours);
END;

The way in which your program calls a function depends on its needs. If you need to simply return

some results from the database and apply a function to each of the results, then use a query. You may
have an application that needs to pass a value to a function and use the result at some later point, in
which case assigning the function to a variable would be a good choice for this case. Whatever the case
may be, functions provide convenient calling mechanisms to cover most use cases.

4-3. Optimizing a Function That Will Always Return the Same Result

for a Given Input

Problem
You want to create a function that will return the same result whenever a given input, or set of inputs, is
presented to it. You want the database to optimize based upon that deterministic nature.

Solution
Specify the DETERMINISTIC keyword when creating the function to indicate that the function will always
return the same result for a given input. For instance, you want to return a specific manager name based
upon a given manager ID. Furthermore, you want to optimize for the fact that any given input will
always return the same result. The following example demonstrates a function that does so by specifying
the DETERMINISTIC keyword:

CREATE OR REPLACE FUNCTION manager_name(mgr_id IN NUMBER)
RETURN VARCHAR2
DETERMINISTIC IS
 first_name employees.first_name%TYPE;
 last_name employees.last_name%TYPE;
BEGIN
 IF mgr_id IS NOT NULL THEN
 SELECT first_name, last_name
 INTO first_name, last_name

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

69

 FROM EMPLOYEES
 WHERE employee_id = mgr_id;

 RETURN first_name || ' ' || last_name;
 ELSE
 RETURN 'N/A';
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN 'N/A';
END;

This function will return the manager name for a matching EMPLOYEE_ID. If there are no matches for

the EMPLOYEE_ID found, then N/A will be returned.

How It Works
A deterministic function is one that always returns the same resulting value as long as the parameters
that are passed in are the same. This type of function can be useful for improving performance. The
function will be executed only once for any given set of parameters. This means that if the same
parameters are passed to this function in subsequent calls, then the function will be bypassed and return
the cached value from the last execution using those parameters. This can really help in cases where
calculations are being performed and repeated calls to the function may take a toll on performance.

The DETERMINISTIC clause is required in a couple of cases. In the event that you are calling a function
in an expression of a function-based index, you need to write the function as DETERMINISTIC, or you will
receive errors. Similarly, a function must be made DETERMINISTIC if it is being called in an expression of a
materialized view query or if the view is marked as ENABLE QUERY REWRITE or REFRESH FAST.

4-4. Creating a Stored Procedure

Problem
There is a database task that you are performing on a regular basis. Rather than executing a script that
contains lines of PL/SQL code each time you execute the task, you want to store the code in the database
so that you can simply execute the task by name or so that you can schedule it to execute routinely via
Oracle Scheduler.

■ Note See Chapter 11 for information on scheduling PL/SQL jobs using Oracle Scheduler.

Solution
Place the code that is used to perform your task within a stored procedure. The following example
creates a procedure named INCREASE_WAGE to update the employee table by giving a designated
employee a pay increase. Of course, you will need to execute this procedure for each eligible employee
in your department. Storing the code in a procedure makes the task easier to perform.

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

70

CREATE OR REPLACE PROCEDURE INCREASE_WAGE (empno_in IN NUMBER,
 pct_increase IN NUMBER,
 upper_bound IN NUMBER) AS
 emp_count NUMBER := 0;
 emp_sal employees.salary%TYPE;

 Results VARCHAR2(50);

BEGIN

 SELECT salary
 INTO emp_sal
 FROM employees
 WHERE employee_id = empno_in;

 IF emp_sal < upper_bound
 AND round(emp_sal + (emp_sal * pct_increase), 2) < upper_bound THEN

 UPDATE employees
 SET salary = round(salary + (salary * pct_increase),2)
 WHERE employee_id = empno_in;

 results := 'SUCCESSFUL INCREASE';
 ELSE
 results := 'EMPLOYEE MAKES TOO MUCH, DECREASE RAISE PERCENTAGE';
 END IF;

 DBMS_OUTPUT.PUT_LINE(results);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001, 'No employee match for the given ID');
END;

The following are the results from executing the procedure for employee number 198. In the
example, the employee is being given a 3 percent increase and an upper bound of $5,000.

BEGIN
 increase_wage(198,.03,5000);
END;

SUCCESSFUL INCREASE
Statement processed.

How It Works
In the example, the procedure accepts three parameters: the employee number, the percent of increase
they will receive, and an upper salary bound. You can then invoke the procedure by name, passing in the
required parameters.

The procedure first searches the database for the provided employee number. If a record for that
employee is found, then the employee record is queried for the current salary. If the salary is less than
the upper bound and the resulting new salary will still be less than the upper bound, then the increase

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

71

will be applied via an UPDATE statement. If the employee is not found, then an alert message will be
displayed. As you can see, this procedure can be called for any individual employee, and it will increase
their wage accordingly as long as the increase stays within the bound.

Stored procedures can be used to encapsulate functionality and store code in the database data
dictionary. Much like a function, they can accept zero or more values as parameters, including
collections. A stored procedure is structured in much the same way as a function in that it includes a
header, an executable section, and an optional exception-handling block. However, a procedure cannot
include a RETURN clause in the header, and it does not return a value.

For example, in the solution to this recipe, the procedure contains the following header:

CREATE OR REPLACE PROCEDURE INCREASE_WAGE (empno_in IN NUMBER,
 pct_increase IN NUMBER,
 upper_bound IN NUMBER) AS

The header uses the OR REPLACE clause to indicate that this procedure should replace any procedure

with the same name that already exists. The procedure accepts three parameters, and although all of
them are NUMBER type, any datatype can be accepted as a parameter. The declaration section comes after
the header, and any cursors, variables, or exceptions that need to be declared should be taken care of in
that section. Next, the actual work that the procedure will do takes place between the BEGIN and END
keywords. Note that the header does not contain a RETURNS clause since procedures cannot return any
values.

The advantage of using procedures is that code can be encapsulated into a callable named routine
in the data dictionary and can be called by many users. To create a procedure in your schema, you must
have the CREATE PROCEDURE system privilege. You can create a stored procedure in another schema if you
have the CREATE ANY PROCEDURE system privilege.

4-5. Executing a Stored Procedure

Problem
You want to execute a stored procedure from SQL*Plus.

Solution
Open SQL*Plus, and connect to the database schema that contains the procedure you are interested in
executing. Execute the procedure by issuing the following command:

EXEC procedure_name([param1, param2,...]);

For instance, to execute the procedure that was created in Recipe 4-3, you would issue the following

command:

EXEC increase_wage(198, .03, 5000);

This would invoke the INCREASE_WAGE procedure, passing three parameters: EMPLOYEE_ID, a

percentage of increase, and an upper salary bound.
You can also execute a stored procedure by creating a simple anonymous block that contains the

procedure call, as depicted in the following code:

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

72

BEGIN
 procedure_name([param1, param2,…]);
END;

Using this technique, invoking the stored procedure that was created in Recipe 4-3 would resemble

the following:

BEGIN
 increase_wage(198,.03,5000);
END;

Both techniques work equally well, but the latter would be better to use if you wanted to execute

more than one procedure or follow up with more PL/SQL statements. If you are running a single
procedure from SQL*Plus, then using EXEC is certainly a good choice.

How It Works
A stored procedure can be executed using the EXEC keyword. You can also type EXECUTE entirely. Both the
long and shortened versions will work.

It is also possible to execute a procedure that is contained within other schemas, if the current user
has execute privileges on that procedure. In such a scenario, use dot notation to qualify the procedure
name. Here’s an example:

EXEC different_schema.increase_wage(emp_rec.employee_id, pct_increase, upper_bound);

■ Note To learn more about privileges regarding stored programs, please take a look at Recipe 4-11.

A procedure can also be invoked from within another procedure by simply typing the name and
placing the parameters inside parentheses, if there are any. For instance, the following lines of code
demonstrate calling a procedure from within another procedure. The procedure in this example invokes
the procedure that was shown in Recipe 4-3.

CREATE OR REPLACE PROCEDURE grant_raises (pct_increase IN NUMBER,

upper_bound IN NUMBER) as
 CURSOR emp_cur is
 SELECT employee_id, first_name, last_name
 FROM employees;
BEGIN
 -- loop through each record in the employees table
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name);
 increase_wage(emp_rec.employee_id, pct_increase, upper_bound);
 END LOOP;
END;

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

73

The procedure GRANT_RAISES applies an increase across the board to all employees. It loops through
all employee records, and the INCREASE_WAGE procedure is called with each iteration. The procedure is
called without the use of the EXEC keyword since it is being invoked by another procedure rather than
directly from the SQL*Plus command line.

4-6. Creating Functions Within a Procedure or Code Block

Problem
You want to create some functions within a stored procedure. You want the functions to be local to the
procedure, available only from the procedure’s code block.

Solution
Create a stored procedure, and then create functions within the declaration section. The internal
functions will accept parameters and return values just as an ordinary stored function would, except that
the scope of the functions will be constrained to the outer code block or to the procedure. The procedure
that is demonstrated in this solution embodies two functions. One of the functions is used to calculate
the federal tax for an employee paycheck, while the other calculates the state tax.

CREATE OR REPLACE PROCEDURE calc_employee_paycheck(emp_id IN NUMBER) as
 emp_rec employees%ROWTYPE;
 paycheck_total NUMBER;

-- function for state tax
 FUNCTION calc_state (sal IN NUMBER)
 RETURN NUMBER IS
 BEGIN
 RETURN sal * .08;
 END;

-- function for federal tax
 FUNCTION calc_federal (sal IN NUMBER)
 RETURN NUMBER IS
 BEGIN
 RETURN sal * .12;
 END;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Calculating paycheck with taxes');
 SELECT *
 INTO emp_rec
 FROM employees
 WHERE employee_id = emp_id;

 paycheck_total := emp_rec.salary - calc_state(emp_rec.salary) -
 calc_federal(emp_rec.salary);

 DBMS_OUTPUT.PUT_LINE('The paycheck total for ' || emp_rec.last_name ||
 ' is ' || paycheck_total);

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

74

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001,
 'No matching employee for the given ID');
END;

How It Works
Functions—and procedures too—can be contained within other bodies of code. Creating a function
within a declaration section will make the function accessible to the block that contains it. The
declaration of the function is the same as when you are creating a stored function, with the exception of
the CREATE OR REPLACE keywords. Any variables that are declared inside the function will be accessible
only to that function, not to the containing object.

Creating a function or procedure inside a PL/SQL code block can be useful when you want to make
a function that is only to be used by the containing object. However, if you find that the body of the
embedded function may change frequently, then coding a separate stored function may prove to be
more efficient.

4-7. Passing Parameters by Name

Problem
You have a procedure in your database that accepts a large number of parameters. When calling the
procedure, you would rather not worry that the positioning of the parameters is correct.

Solution
Rather than trying to pass all the parameters to the procedure in the correct order, you can pass them by
name. The code in this solution calls a procedure that accepts six parameters, and it passes the
parameters by name rather than in order.

Procedure Declaration:

PROCEDURE process_emp_paycheck(EMP_ID IN NUMBER,
 PAY_CODE IN NUMBER,
 SICK_USED IN NUMBER,
 VACATION_USED IN NUMBER,
 FEDERAL_TAX IN NUMBER,
 STATE_TAX IN NUMBER);

Procedure Execution:

EXEC process_emp_paycheck(EMP_ID=>10,
 PAY_CODE=>10,
 VACATION_USED=>8.0,
 SICK_USED=>8.0,
 STATE_TAX=>.06,
 FEDERAL_TAX=>.08);

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

75

As you can see, by passing the parameters by name, they do not need to follow the same positional
ordering as they do within the declaration of the procedure.

How It Works
To pass a parameter by name, you list the parameter name followed by an arrow (consisting of an equal
sign and a greater-than symbol) pointing to the value you are passing. The following pseudocode depicts
this technique:

procedure_name(parameter=>value);

Although it can be more verbose to use named parameters, passing parameters by name can be very

handy when there are several parameters to pass because you do not need to worry about passing them
in the correct order. It is also helpful because it increases readability.

Both procedures and functions can accept positional and named parameters. Neither notation is
superior to the other, so which one you choose to use is completely dependant upon the procedure or
function that is currently being called. However, named parameters are a safe choice if trying to
maintain consistency with procedure calls throughout your application or your organization.

Although not recommended, you can use both positional and named notation when passing
parameters within the same call. When doing so, you need to place the parameters that you want to pass
using positional notation first, followed by the parameters that you want to pass using named notation.
The following execution illustrates using both positional and named notation while passing parameters
to the PROCESS_EMP_PAYCHECK procedure:

EXEC process_emp_paycheck(198, 10, 0,
 SICK_USED=>4.0,
 STATE_TAX=>.05,
 FEDERAL_TAX=> .04);

This particular call passed both of the first parameters by position, those being EMP_ID and PAY_CODE.

The last three parameters are passed by named notation.

4-8. Setting Default Parameter Values

Problem
You want to create a procedure that accepts several parameters. However, some of those parameters
should be made optional and contain default values.

Solution
You can allow the procedure caller to omit the parameters if default values are declared for the variables
within the procedure. The following example shows a procedure declaration that contains default
values:

PROCEDURE process_emp_paycheck(EMP_ID IN NUMBER,
 PAY_CODE IN NUMBER,
 SICK_USED IN NUMBER,
 VACATION_USED IN NUMBER,
 FEDERAL_TAX IN NUMBER DEFAULT .08,

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

76

 STATE_TAX IN NUMBER DEFAULT .035);

And here is an example execution:

EXEC process_emp_paycheck(EMP_ID=>10,
 PAY_CODE=>10,
 VACATION_USED=>8.0,
 SICK_USED=>8.0);

Since the procedure contains default values, the parameters can be omitted when the procedure is

called.

How It Works
The ability to provide a default value for a variable declaration is optional. To do so, you must provide
the declaration of the variable with the keyword DEFAULT followed by the value, as shown in the solution
to this recipe. If a default value is declared, then you needn’t specify a value for the parameter when the
function or procedure is called. If you do specify a value for a parameter that has a default value, the
specified value overrides the default.

4-9. Collecting Related Routines into a Single Unit

Problem
You have a number of procedures and functions that formulate an entire application when used
together. Rather than defining each subprogram individually, you prefer to combine all of them into a
single, logically related entity.

Solution
Create a PL/SQL package that in turn declares and defines each of the procedures together as an
organized entity. You declare each of the subprograms in the package specification (otherwise known as
a header) and define them in the package body.

The following example shows the creation of a PL/SQL package containing two procedures and a
variable.

First, you create the package specification:

CREATE OR REPLACE PACKAGE process_employee_time IS
 total_employee_salary NUMBER;
 PROCEDURE grant_raises(pct_increase IN NUMBER,
 upper_bound IN NUMBER);
 PROCEDURE increase_wage (empno_in IN NUMBER,
 pct_increase IN NUMBER,
 upper_bound IN NUMBER) ;
END;

The specification lists the procedures, functions, and variables that you want to be visible from

outside the package. Think of the specification as the external interface to your package.
Next, create the package body:

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

77

CREATE OR REPLACE PACKAGE BODY process_employee_time IS
 PROCEDURE grant_raises (pct_increase IN NUMBER,
 upper_bound IN NUMBER) as
 CURSOR emp_cur is
 SELECT employee_id, first_name, last_name
 FROM employees;
BEGIN
 -- loop through each record in the employees table
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name);
 increase_wage(emp_rec.employee_id, pct_increase, upper_bound);
 END LOOP;
END;

 PROCEDURE INCREASE_WAGE (empno_in IN NUMBER,
 pct_increase IN NUMBER,
 upper_bound IN NUMBER) AS
 emp_count NUMBER := 0;
 emp_sal employees.salary%TYPE;

 Results VARCHAR2(50);

BEGIN

 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE employee_id = empno_in;

 IF emp_count > 0 THEN
 -- IF EMPLOYEE FOUND, THEN OBTAIN RECORD
 SELECT salary
 INTO emp_sal
 FROM employees
 WHERE employee_id = empno_in;

 IF emp_sal < upper_bound AND round(emp_sal + (emp_sal * pct_increase), 2) <
 upper_bound THEN

 UPDATE employees
 SET salary = round(salary + (salary * pct_increase),2)
 WHERE employee_id = empno_in;

 results := 'SUCCESSFUL INCREASE';
 ELSE
 results := 'EMPLOYEE MAKES TOO MUCH, DECREASE RAISE PERCENTAGE';
 END IF;

 ELSE
 Results := 'NO EMPLOYEE FOUND';
 END IF;

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

78

 DBMS_OUTPUT.PUT_LINE(results);

 END;
END;

The package in this example declares a global variable and two procedures within the package

specification. The package body then defines both of the procedures and assigns a value to the variable
that was declared in the specification. Procedures defined within the package body are defined in the
same manner as they would be if they were stand-alone procedures. The difference is that now these two
procedures are contained in a single package entity and are therefore related to each other and can
share variables declared globally within the package.

How It Works
A PL/SQL package can be useful for organizing code into a single construct. Usually the code consists of
a grouping of variables, types, cursors, functions, and procedures that perform actions that are logically
related to one another. Packages consist of a specification and a body, both of which are stored
separately in the data dictionary. The specification contains the declarations for each of the variables,
types, subprograms, and so on, that are defined in the package. The body contains the implementations
for each of the subprograms and cursors that are included in the specification, and it can also include
implementations for other functions and procedures that are not in the specification. You’ll learn more
about this in other recipes.

Most packages contain both a specification and a body, and in these cases the specification acts as
the interface to the constructs implemented within the body. The items that are included in the
specification are available to the public and can be used outside the package. Not all packages contain a
body. If there are only declarations of variables or constants in the package, then there is no need for a
body to implement anything. Other PL/SQL objects outside the package can reference any variables that
are declared in the specification. In other words, declaring a variable within a PL/SQL package
specification essentially creates a global variable.

■ Note Global variables should be used wisely. The use of global variables can complicate matters when tracking

down problems or debugging your code. If global variables are used, then it can be hard to determine where

values have been set and where initialization of such variables occurs. Following the rules of encapsulation and

using local variables where possible can make your life easier.

Procedures and functions defined within the package body may call each other, and they can be
defined in any order as long as they have been declared within the package specification. If any of the
procedures or functions have not been declared in the specification, then they must be defined in the
package body prior to being called by any of the other procedures or functions.

You can change any implementations within a package body without recompiling the specification.
This becomes very important when you have other objects in the database that depend on a particular
package because it is probably not a good idea to change a package specification during normal business
hours when a package is in use by others. Doing so may result in unusable objects, and the package
users could begin to see errors. However, if changes need to be made to the code within the package
body, then you can change that code without affecting public-facing constructs of a package.

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

79

Packages are one of the most important constructs that you can create in PL/SQL. You will use
packages to combine common code objects for almost any significant application that you write. It is
possible to create entire applications without the use of a package, but doing so can create a
maintenance nightmare because you will begin to see a pool of procedures and functions being created
within your database, and it will be difficult to remember which constructs are used for different tasks.
Packages are especially handy when writing PL/SQL web applications, and you will learn all about doing
this in Chapter 14.

4-10. Writing Initialization Code for a Package

Problem
You want to execute some code each time a particular PL/SQL package is instantiated in a session.

Solution
Create an initialization block for the package in question. By doing so, you will have the ability to execute
code each time the package is initialized. The following example shows the same package that was
constructed in Recipe 4-7. However, this time the package contains an initialization block.

CREATE OR REPLACE PACKAGE BODY process_employee_time IS

 PROCEDURE grant_raises (pct_increase IN NUMBER,
 upper_bound IN NUMBER) as
 CURSOR emp_cur is
 SELECT employee_id, first_name, last_name
 FROM employees;
 BEGIN
 -- loop through each record in the employees table
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name);
 increase_wage(emp_rec.employee_id, pct_increase, upper_bound);
 END LOOP;
 END grant_raises;

 PROCEDURE increase_wage (empno_in IN NUMBER,
 pct_increase IN NUMBER,
 upper_bound IN NUMBER) AS
 emp_count NUMBER := 0;
 emp_sal employees.salary%TYPE;

 Results VARCHAR2(50);

 BEGIN

 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE employee_id = empno_in;

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

80

 IF emp_count > 0 THEN
 -- IF EMPLOYEE FOUND, THEN OBTAIN RECORD
 SELECT salary
 INTO emp_sal
 FROM employees
 WHERE employee_id = empno_in;

 IF emp_sal < upper_bound AND round(emp_sal + (emp_sal * pct_increase), 2) <
 upper_bound THEN

 UPDATE employees
 SET salary = round(salary + (salary * pct_increase),2)
 WHERE employee_id = empno_in;

 results := 'SUCCESSFUL INCREASE';
 ELSE
 results := 'EMPLOYEE MAKES TOO MUCH, DECREASE RAISE PERCENTAGE';
 END IF;

 ELSE
 Results := 'NO EMPLOYEE FOUND';
 END IF;

 DBMS_OUTPUT.PUT_LINE(results);

 END increase_wage;

BEGIN
 DBMS_OUTPUT.PUT_LINE('EXECUTING THE INITIALIZATION BLOCK');
END;

The initialization block in this example is the last code block within the package body. In this case,
that block lies in the final three lines.

How It Works
The initialization block for the package in the solution displays a line of text to indicate that the
initialization block has been executed. The initialization block will execute once per session, the first
time the package is used in that session. If you were to create this package in your session and invoke
one of its members, you would see the message print. Although an initialization message is not very
useful, there are several good reasons to use an initialization block. One such reason is to perform a
query to obtain some data for the session.

4-11. Granting the Ability to Create and Execute Stored Programs

Problem
You want to grant someone the ability to create and execute stored programs.

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

81

Solution
To grant the ability for a user to create a procedure, function, or package, you must log in to the database
with a privileged account and grant the CREATE PROCEDURE privilege to the user. Here’s an example:

GRANT CREATE PROCEDURE TO user;

Similarly, to grant permissions for execution of a procedure, package, or function, you must log in

with a privileged account and grant the user EXECUTE permissions on a particular procedure, function, or
package. Here’s an example:

GRANT EXECUTE ON schema_name.program_name TO schema;

How It Works
Before a user can create stored code, the user must be given permission to do so. The solution shows the
straightforward approach. The database administrator logs in and grants CREATE PROCEDURE to the
schema owner. The schema owner can then log in and create stored code in their schema.

A schema owner can always execute stored code in the schema. However, application users do not
generally log in as schema owners because of the security risks inherent in doing so. Thus, you will
commonly be faced with the need to grant other users execute access on stored code. You do that by
granting EXECUTE privileges, as shown in the second solution example.

4-12. Executing Packaged Procedures and Functions

Problem
You want to execute one of the procedures or functions contained within a package.

Solution
Use the package_name.object_name notation to execute a particular code object within a package. For
instance, the following block of code executes the GRANT_RAISES procedure that is contained within the
PROCESS_EMPLOYEE_TIME package.

 BEGIN
 process_employee_time.grant_raises(.03,4000);
 END;

The previous code block executes the GRANT_RAISES function, passing .03 for the percentage of

increase and 4000 for the upper bound.

How It Works
Dot notation is used for accessing members of a package. Similar to other languages such as Java, dot
notation can be used to access any publically accessible member of the package. Any variable, function,
or procedure that is contained in the package specification can be accessed using the dot notation.
Therefore, if your package contained a constant variable within its specification that you wanted to
access, it would be possible to do so from outside the package.

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

82

For a schema to access and execute package members, it must have the appropriate permissions. To
grant EXECUTE permission on a package that you own, use the following syntax:

GRANT EXECUTE ON package_name TO user_name;

Dot notation works from within other procedures or functions. It can also be used from the

SQL*Plus command line using the EXEC command.

■ Note In most cases, if a package is being used by another schema, then it is a good idea to create a public

synonym for that package within the database. This will help decrease issues while attempting to reference the

package and its programs from the different schema because you will not need to specify the schema name in

order to qualify the call. Please see Recipe 4-13 for more information regarding public synonyms.

4-13. Creating a Public Name for a Stored Program

Problem
You want to allow for any schema to have the ability to reference a particular stored program that is
contained within your schema. For instance, the CALC_EMPLOYEE_PAYCHECK procedure should be
executable for any of the administrative users of the database. You want these users to have the ability to
simply call the procedure rather than preceding the procedure name with the schema using the dot
notation.

Solution
Create a public synonym for the function, procedure, or package. This will allow any user that has
EXECUTE privileges on the stored program to call it without specifying the schema name first. Instead, the
invoker need only reference the synonym.
In the following example, the user AdminUser does not have direct access to the
CALC_EMPLOYEE_PAYCHECK procedure, so they must fully qualify the name of the package using the schema
name for which the procedure resides.

SQL> exec application_account.calc_employee_paycheck(200);
Calculating paycheck with taxes
The paycheck total for Whalen is 5200.8

PL/SQL procedure successfully completed.

Next, the database administrator will create a public synonym for the procedure:

SQL> CREATE PUBLIC SYNONYM calc_employee_paycheck
 FOR application_user.calc_employee_paycheck;

Now any user with execute privileges on the procedure can invoke it without fully qualifying the

name since a public synonym named CALC_EMPLOYEE_PAYCHECK has been created. This is demonstrated in

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

83

the next lines of code. Again, the user AdminUser is now logged into the system and executes the
procedure.

SQL> exec calc_employee_paycheck(206);
Calculating paycheck with taxes
The paycheck total for Gietz is 6640.8

PL/SQL procedure successfully completed.

As you can see, the procedure name no longer requires the schema name to fully qualify it before

being invoked.

How It Works
Creating public synonyms is a useful technique for allowing any user to have access to a stored piece of
code without knowing which schema the code belongs to. Any user who has EXECUTE privileges on the
code can invoke it without fully qualifying the name. Instead, the invoker specifies the synonym name.

An account must be granted the CREATE PUBLIC SYNONYM privilege in order to create a public
synonym. It’s actually common for database administrators to take care of creating such synonyms.

To create a synonym, execute the following statement, replacing the PUB_SYNONYM_NAME identifier
with the name of your choice and replacing SCHEMA.STORED_PROGRAM with the schema name and program
that you want to make publically accessible:

CREATE PUBLIC SYNONYM pub_synonym_name FOR schema.stored_program;

The public synonym name does not have to be the same as the actual stored program name, but it is

conventional to keep them the same, and it makes things consistent and the names easier to remember.
If you begin to have synonym names that differ from the actual program names, then confusion will
eventually set in.

■ Note Creating a synonym does not give execute access. Creating a public synonym provides only a global name

that avoids the need for dot notation. Invokers of a procedure or function still must be granted EXECUTE access, as

shown in Recipe 4-11.

4-14. Executing Package Programs in Sequence

Problem
You have created a package that contains all the necessary procedures and functions for your program.
Although you can invoke each of these subprograms individually using the
package_name.subprogram_name notation, it would be beneficial to execute all of them at the same time
by issuing a single statement.

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

84

Solution
Create a driver procedure within your PL/SQL package that will be used to initiate all the subprograms in
turn, and run your entire program. In the following example, a procedure named driver is created inside
a package, and it will invoke all the other package subprograms in turn:

First, create the specification:

CREATE OR REPLACE PACKAGE synchronize_data IS
 PROCEDURE driver;
END;

Then, create the body:

CREATE OR REPLACE PACKAGE BODY synchronize_data IS
 PROCEDURE query_remote_data IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('QUERYING REMOTE DATA');
 END query_remote_data;

 PROCEDURE obtain_new_record_list IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('NEW RECORD LIST');
 END obtain_new_record_list;

 PROCEDURE obtain_updated_record_list IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('UPDATED RECORD LIST');
 END obtain_updated_record_list;

 PROCEDURE sync_local_data IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('SYNC LOCAL DATA');
 END sync_local_data;

 PROCEDURE driver IS
 BEGIN
 query_remote_data;
 obtain_new_record_list;
 obtain_updated_record_list;
 sync_local_data;
 END driver;
END synchronize_data;

The driver procedure initiates all the other procedures in the order that they should be executed. To

initiate the packaged program, you now make a call to the driver procedure as follows:

BEGIN
 synchronize_data.driver;

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

85

END;

One statement invokes the driver procedure. That procedure in turn invokes the other procedures

in the proper sequence.

How It Works
By creating a single procedure that can be called in order to execute all the other subprograms in turn,
you eliminate the potential for calling subprograms in the incorrect order. This will also allow you the
convenience of making one call as opposed to numerous calls each time you want to execute the task(s)
involved. And, if you create the other subprograms as private procedures and functions, then you
eliminate the risk of a developer invoking them out of order. That’s because you only make the driver
procedure public, and you know that the driver invokes in the correct sequence.

Oftentimes, packages are used to hold all the database constructs that make up an entire process. In
the solution to this recipe, the package entails a database synchronization process, and each procedure
within performs a separate piece of the synchronization. When executed in the correct order, the
procedures together perform the complete synchronization task.

One could just as easily create a script or manually invoke each package program separately just as
the driver procedure does in this case. However, you open the door to error when you write the logic of
invoking the sequence of procedures from multiple places. Another important factor is that the driver
can also be used to perform any additional initialization that must be done prior to executing each
procedure. Similarly, additional processing can be done in between each procedure call, such as
printing out the current status of the program. The driver procedure essentially provides another layer
of abstraction that you can take advantage of. The package can be initialized using the default package
initialization; then additional initialization or statements can be provided within the driver procedure,
and the program caller doesn’t need to know about them.

4-15. Implementing a Failure Flag

Problem
You want to create a boolean variable to determine whether one of the subprograms in the package has
generated an error. If an error has been generated by one of the subprograms, then the variable will be
set to TRUE. This flag will be evaluated in the driver procedure to determine whether the updates
performed by the package should be committed or rolled back.

Solution
Declare a global variable at the package level, and it will be accessible to all objects within. You can do
this by declaring the variable within the package body. The following package illustrates such a variable,
where the variable has been declared within the package body so that it is available for all objects in the
package only.

CREATE OR REPLACE PACKAGE synchronize_data
PROCEDURE driver;
END;

CREATE OR REPLACE PACKAGE BODY synchronize_data IS
 error_flag BOOLEAN := FALSE;

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

86

 PROCEDURE query_remote_data is
 Cursor remote_db_query is
 SELECT *
 FROM my_remote_data@remote_db;

 remote_db_rec employees%ROWTYPE;

 BEGIN
 OPEN remote_db_query;
 LOOP
 FETCH remote_db_query INTO remote_db_rec;
 EXIT WHEN remote_db_query%NOTFOUND;
 IF remote_db_query%NOTFOUND THEN
 error_flag := TRUE;
 ELSE
 -- PERFORM PROCESSING
 DBMS_OUTPUT.PUT_LINE('QUERY REMOTE DATA');
 END IF;
 END LOOP;
 CLOSE remote_db_query;
 END query_remote_data;

 PROCEDURE obtain_new_record_list IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('NEW RECORD LIST');
 END obtain_new_record_list;

 PROCEDURE obtain_updated_record_list IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('UPDATED RECORD LIST');
 END obtain_updated_record_list;

 PROCEDURE sync_local_data IS
 BEGIN
 --statements go here
 DBMS_OUTPUT.PUT_LINE('SYNC LOCAL DATA');
 END sync_local_data;

 PROCEDURE driver IS
 BEGIN
 query_remote_data;
 IF error_flag = TRUE THEN
 GOTO error_check;
 END IF;

 obtain_new_record_list;
 IF error_flag = TRUE THEN
 GOTO error_check;
 END IF;

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

87

 obtain_updated_record_list;
 IF error_flag = TRUE THEN
 GOTO error_check;
 END IF;

 sync_local_data;

 -- If any errors were found then roll back all updates
 <<error_check>>
 DBMS_OUTPUT.PUT_LINE('Checking transaction status');
 IF error_flag = TRUE THEN
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE('The transaction has been rolled back.');
 ELSE
 COMMIT;
 DBMS_OUTPUT.PUT_LINE('The transaction has been processed.');
 END IF;

 END driver;
END;

How It Works
Declaring variables in the package body outside any procedures or functions allows them to become
accessible to all subprograms within the package. If one or more of the subprograms changes such a
variable’s value, then the changed value will be seen throughout the entire package.

As depicted in the example, you can see that the variable is referenced several times throughout the
package. If you had a requirement to make a variable global to all PL/SQL objects outside the package as
well, then you can declare the variable within the package specification. As mentioned in Recipe 4-8,
anything declared in the package specification is publically available to any PL/SQL object outside as
well as within the package body.

4-16. Forcing Data Access to Go Through Packages

Problem
You have defined all subprograms and packages for a particular application, and you want to allow other
users to access these constructs and execute the program but not have access to any data tables directly.

Solution
Define all the packages, procedures, and functions for your program within a single schema that has
access to all the data. All user access should be made from separate schemas, and they should be granted
execute privileges on the PL/SQL objects but not access to the tables themselves.

For instance, if you want to control access to a package named PROCESS_EMPLOYEE_TIME, that package
along with all required tables, types, and sequences should be loaded into an application schema that
has the appropriate permissions required to access the data. For the purposes of this recipe, the
application schema name is EMP.

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

88

Next, create a role by which to manage the privileges needed to invoke the package’s procedures
and functions. Grant EXECUTE privileges to that role. Grant that role to application users.

Your application users will now be able to execute the procedures and functions within the package.
Those procedures and functions can in turn update the database tables in the package’s schema.
However, users will not have direct access to those tables. All updates must flow through the package.

How It Works
To control an application’s data, it is important to restrict access to the tables. The solution in this recipe
shows how to create a package in the same schema that contains the application tables. The package
thus has access to those tables. Users, however, do not have table-level access.

After creating the package, you can grant EXECUTE access on the package to application users. Users
can then invoke packaged procedures and functions, and those procedures and functions in turn can
modify the data in the tables. However, users have no direct access to the tables.

By forcing users to go through packaged procedures and functions, you limit users to using a
defined interface that remains under your control. You now have some amount of freedom to modify the
underlying tables. So long as you do not change the package interface, you can make changes to the
underlying tables without disrupting the application.

4-17. Executing Stored Code Under Your Own Privilege Set

Problem
You have loaded all of an application’s objects into a single application schema. However, you do not
want packages, procedures, and functions to execute as the schema owner. Instead, you want stored
code to execute with the privileges and access of the user who is invoking that code.

Solution
Use invoker’s rights by providing the AUTHID property within the declaration of your program. If the
AUTHID property is specified when defining a package, procedure, or function, then you have the ability
to specify whether the program should be invoked using the CURRENT_USER privileges or the DEFINER
privileges. In the case of this solution, you would rather use the CURRENT_USER privileges to ensure that
the user does not have the same level of access as the schema owner. The default is DEFINER.

The following code shows how to create a procedure for changing a password, and it uses the AUTHID
property to ensure that the procedure will be run using the CURRENT_USER’s privilege set. This particular
procedure uses dynamic SQL to create a SQL statement. To learn more about using dynamic SQL, please
see Chapter 8.

CREATE OR REPLACE PROCEDURE change_password(username IN VARCHAR2,

new_password IN VARCHAR2)
AUTHID CURRENT_USER IS

 sql_stmt VARCHAR2(100);

BEGIN
 sql_stmt := 'ALTER USER ' || username || ' IDENTIFIED BY ' || new_password;

 EXECUTE IMMEDIATE sql_stmt;

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

89

END;

When the user executes this procedure, it will be executed using their own set of permissions. This

will prevent them from changing anyone else’s password unless they have the ability to do so under their
allotted permission set.

How It Works
Invoker’s rights are a great way to secure your application if you are planning to limit access to the
CURRENT_USER’s privilege set. To allow for invoker’s rights to be set into place, the AUTHID property must
be used with the CURRENT_USER keyword in the definition of a stored PL/SQL unit. This property affects
the name resolution and privilege set for that unit. You can find the value of the AUTHID property if you
take a look at the USER_PROCEDURES data dictionary view.

Using the invoker’s rights methodology is a great way to protect a program as long as the users
access the program with their own database account. If each user within the database has their own
account, then they can be granted the required level of access via database roles. The AUTHID property
can constrain the execution of code to the current user’s privilege set. Because of that, if a user does not
have the privileges that are required to execute a particular program, then they will not have access.
Simply put, invoker’s rights are a good means of securing your code as long as the approach is used
correctly.

4-18. Accepting Multiple Parameter Sets in One Function

Problem
You want to give a function the ability to accept multiple parameter types instead of being constrained
to a particular datatype or number of parameters. For example, you want to create a single function that
can accept either one or two parameters and that will perform a slightly different action depending upon
the number of parameters you pass it.

Solution
Use overloading to create multiple functions that are named the same and perform similar functionality
but accept a different number of parameters, different ordering of parameters, or parameters of different
types. In this recipe, you will see a function named squared that takes a number and returns its value
squared. Similarly, there is another function also named squared that accepts two numbers instead of
one. This second function is the overloaded version of the original squared. Here is the code for the two
functions:

-- Returns the square of the number passed in
CREATE OR REPLACE FUNCTION squared (in_num IN NUMBER)
 RETURN NUMBER AS
BEGIN
 RETURN in_num * in_num;
END;

 -- Returns the squared sum of two numbers
CREATE OR REPLACE FUNCTION squared (in_num IN NUMBER,
 in_num_two IN NUMBER)
 RETURN NUMBER AS

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

90

BEGIN
 RETURN (in_num + in_num_two) * (in_num + in_num_two);
END;

You can see that each of the previous functions accepts a different number of parameters, but they

both perform similar tasks. This is a good illustration for using function overloading because someone
using this function would expect a similar result to be returned whether calling the function with one
parameter or two.

How It Works
Like many other programming languages, PL/SQL offers an overloading of functions. This makes it
possible to name more than one function by the same name but give each of them different parameter
types, different parameter ordering, or a different number of parameters. This is also known as changing
the function signature. A signature for a function consists of the object name and its parameter list. By
overloading, you have the ability to allow more flexibility to those using the function. For instance, if you
place both of the squared functions into a package named MATH_API, then someone using this package
can simply call the function passing whatever they require and still receive a usable result without
actually knowing the implementation details.

Using overloading to create multiple functions or procedures by the same name can become
troublesome if overused. Be careful that your package is not littered with too many overloaded
procedures or functions because maintenance on such a code base can become a nightmare.
Overloading has its good use cases, but if it can be avoided by using technique that is easier to follow,
then it is a good idea to go the simpler route.

4-19. Listing the Functions, Procedures, and Packages in a Schema

Problem
Your team has defined a number of functions, procedures, and packages within a schema. You want to
generate a listing of all functions, procedures, and packages at the end of each day to evaluate
productivity.

Solution
Use the USER_OBJECTS table to return the program list and prefix packages, procedures, and functions for
the same program with the same first word to make them easier to find.

This first example will return a list of all procedure names that reside within the EMP schema and that
have a name that is prefixed with EMPTIME:

SELECT OBJECT_NAME
FROM USER_OBJECTS
WHERE OBJECT_TYPE = 'PROCEDURE;
WHERE OBJECT_NAME like 'EMPTIME%';

The next query will return a list of all function names that reside within the schema:

SELECT OBJECT_NAME
FROM USER_OBJECTS
WHERE OBJECT_TYPE = 'FUNCTION';

 CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

91

Lastly, the following query will return a listing of all package names that reside within the schema:

SELECT OBJECT_NAME
FROM USER_OBJECTS
WHERE OBJECT_TYPE = 'PACKAGE';

How It Works
Oracle Database contains many views that contain data useful for application development. Using the
USER_OBJECTS table can be very handy when searching for objects within the database. By prefixing like
objects with the same first word, it can make searching for a particular selection of objects rather easy.

USER_OBJECTS provides the ability to find a certain object type by specifying the OBJECT_TYPE within
the query. If no OBJECT_TYPE is specified, then all objects for the schema will be returned.

4-20. Viewing Source Code for Stored Programs

Problem
You want to retrieve the code for your stored functions, procedures, triggers, and packages.

Solution
Use the DBMS_METADATA package to assist you in fetching the information. In this case, you will use the
DBMS_METADATA.GET_DDL procedure to obtain the code for a stored function. In the following code, the
DBMS_METADATA package is used to return the DDL for the CALC_QUARTER_HOUR function:

SELECT DBMS_METADATA.GET_DDL('FUNCTION','CALC_QUARTER_HOUR') FROM DUAL;

The query illustrated previously should produce results that are similar to the following as long as

you have the CALC_QUARTER_HOUR function loaded in your database:

CREATE OR REPLACE FUNCTION "MY_SCHEMA"."CALC_QUARTER_HOUR" (HOURS IN NUMBER)
 RETURN NUMBER AS
 CALCULATED_HOURS NUMBER := 0;
 BEGIN
 IF HOURS > 1 THEN
 IF MOD(HOURS, 1) <=.125 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1);
 ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
 ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
 ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.75,1);
 ELSE
 CALCULATED_HOURS := ROUND(HOURS,1);
 END IF;
 ELSE
 IF HOURS > 0 AND HOURS <=.375 THEN

CHAPTER 4 FUNCTIONS, PACKAGES, AND PROCEDURES

92

 CALCULATED_HOURS := .25;
 ELSIF HOURS > .375 AND HOURS <= .625 THEN
 CALCULATED_HOURS := .5;
 ELSIF HOURS > .625 AND HOURS <= .825 THEN
 CALCULATED_HOURS := .75;
 ELSE
 CALCULATED_HOURS := ROUND(HOURS,1);
 END IF;
 END IF;
 RETURN CALCULATED_HOURS;
 END CALC_QUARTER_HOUR;

The GET_DDL function returns the code that can be used to re-create the procedure or function. This

can be a good way to debug code that you may not have authored and do not have on hand.

■ Note The GET_DDL function will not format the code. Rather, it will be returned as a single string of text. By

default, the buffer will not be large enough to display all of the DDL. You can change the buffer size by issuing the

SET LONG buffersize within SQL*Plus, substituting buffersize with a large integer value.

How It Works
You can use the DBMS_METADATA package to retrieve various pieces of information from the database. The
solution to this recipe demonstrated how to fetch the DDL for a function. There is an abundance of
information that can be obtained by using the DBMS_METADATA package, and GET_DDL barely scratches the
surface.

The GET_DDL function can return the code for each different type of object. To retrieve a the code for
an object using GET_DDL, use the following syntax:

SELECT DBMS_METADATA.GET_DDL('object_type','object_name', 'schema') FROM DUAL;

The OBJECT_TYPE can be the name of any database object type, including TABLE. For the purposes of

PL/SQL code, the OBJECT_TYPE can be FUNCTION, PROCEDURE, PACKAGE, or TRIGGER. The SCHEMA parameter is
optional and does not have to be specified if the object resides within the caller’s schema.

Using DBMS_METADATA, you can obtain complete database object definitions from the database
dictionary via the retrieval subprograms. To learn more about the DBMS_METADATA package and obtain a
listing of available subprograms, please refer to the online Oracle documentation at
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_metada.htm#ARPLS640, which
goes into detail regarding each of the subprogram functionalities.

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_metada.htm#ARPLS640

C H A P T E R 5

93

Triggers

Triggers play an important role in any database developer’s or database administrator’s career. They
provide the ability to execute code upon the occurrence of defined database, schema, or system events.
Triggers can be useful for enhancing applications by providing database capabilities when a table event
occurs, providing alerts on system event occurrences, and so much more. Triggers are an enormous
topic because they are very intricate constructs. However, even though triggers can open up a world of
possibilities, they are easy to use.

In this chapter, you will see recipes demonstrating the many different capabilities that triggers
provide to you. If you are interested in learning how to create code that executes upon a database table–
level event, then this is the chapter for you. If you want to learn how to create an intricate alerting system
that will send e-mail and create logs upon system events, then look at the recipes in this chapter.
Triggers are intricate building blocks that can provide an enormous benefit to our databases and
applications as a whole. By learning how to incorporate these recipes into your applications, you will be
able to solve many issues and enhance a number of your application features. Triggers can be one of the
most useful tools to add to a DBA or application developer’s arsenal.

5-1. Automatically Generating Column Values

Problem
You want to automatically generate certain column values for newly inserted rows. For example, one of
your tables includes a date field that you want to have populated with the current date when a record is
inserted.

Solution
Create a trigger that executes BEFORE INSERT on the table. The trigger will capture the system date and
populate this date field with it prior to inserting the row into the database. The following code
demonstrates how to create a trigger that provides this type of functionality for your application. In the
example, the EMPLOYEES table is going to have its HIRE_DATE populated with the current date when a
record is inserted into the EMPLOYEES table.

CREATE or REPLACE TRIGGER populate_hire_date
BEFORE INSERT• ON employees
 FOR EACH ROW
DECLARE
BEGIN
 :new.hire_date := sysdate;
END;

CHAPTER 5 TRIGGERS

94

A BEFORE INSERT trigger has access to data before it is inserted into the table. This example
demonstrates a useful technique for using this type of trigger.

How It Works
You can use triggers to execute code when a DML statement, DDL statement, or system event occurs.
This recipe demonstrates a trigger that executes when a DML event occurs. Specifically, the trigger that
was created for this recipe is fired BEFORE a row is inserted into the EMPLOYEES table. Any DDL event
trigger can be created to fire BEFORE or AFTER a row is inserted, updated, or deleted from a database table.
This flexibility allows a developer or DBA the luxury of executing code either before or directly after the
values are inserted into the database.

The syntax for creating a trigger that will execute before an insert on a particular table is as follows:

CREATE or REPLACE TRIGGER trigger_name
BEFORE INSERT
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

The CREATE OR REPLACE TRIGGER statement will do just what it says, either create the trigger in the

current schema if none is specified or replace it if another trigger by that name already exists. The trigger
name must be unique among other triggers within the same schema. Although it is possible to name a
trigger the same as an existing table, we do not recommend doing so. Different triggers by the same
name can coexist in the same database if they are in different schemas.

The BEFORE INSERT clause is what tells Oracle when the trigger should be executed before a row is
inserted into the table. The other option for insert triggers is AFTER INSERT, which causes the trigger to be
executed after a row is inserted into the table. You will learn more about AFTER INSERT triggers in
another recipe within this chapter. The optional FOR EACH ROW clause determines whether the trigger will
be executed once for each row that is affected or once when the statement is executed. Essentially this
clause determines whether it will become a row-level trigger or a statement level-trigger. The FOR EACH
ROW clause can have a significant impact on the outcome of an UPDATE trigger. You will learn more about
UPDATE triggers in the next recipe.

The code that follows the optional FOR EACH ROW clause is the DECLARE section. Much like that of a
procedure, this section of the trigger is used to declare any variables, types, or cursors that will be used
by the trigger body. The body of the trigger also resembles that of a procedure. The trigger body is a
standard code block that opens with the BEGIN keyword and ends with the END keyword. Any of the
keywords and constructs that can be used within other PL/SQL code blocks can also be used in triggers.

There are a couple of differences between the trigger and other code blocks in PL/SQL. First, a
trigger is limited to 32KB in size. This is a bit of a limitation; however, it does not prevent a trigger from
invoking other named code blocks. For example, you can write a trigger to invoke stored procedures and
functions that are much longer than 32KB in size.

Second, the INSERT trigger has access to data values prior to insertion in the database via the :NEW
qualifier. This qualifier is what provides the power to the trigger construct. Using the :NEW qualifier along
with a table column name allows you to access the value that is going to be placed into that column via

 CHAPTER 5 TRIGGERS

95

the INSERT statement that has just occurred. In the solution to is recipe, using :NEW.FIRST_NAME and
:NEW.LAST_NAME allows you to reference the values that are going to be inserted into the FIRST_NAME and
LAST_NAME columns before it occurs. This provides the ability to change the values or check the values for
error prior to insertion.

In the case of the solution to this recipe, the HIRE_DATE will always be made the same as the date in
which the record is inserted into the database. Even if the HIRE_DATE is set to some date in the past, this
trigger will automatically assign SYSDATE to it and override the original value. Now, this may not be very
practical example because the data entry clerk may not be inputting the data on the same day as the
hire, but it does provide an effective learning tool for this type of situation. If you wanted to modify the
trigger to be more realistic, then you could add an IF statement to check and see whether
:NEW.HIRE_DATE already had a value. If it does, then that value is inserted into the database, but if left
blank, then SYSDATE could be used. Such an example would be a more practical real-life solution.

5-2. Keeping Related Values in Sync

Problem
You want to keep related values in sync that happen to be stored in separate tables. For example, say you
are updating the salary level for a number of jobs within the JOBS table. However, in doing so, you will
need to update the salaries within the EMPLOYEES table for employees having those jobs. In short, if you
update the salary range for a job, then you want to automatically update salaries to ensure that they fall
within the new range.

■ Note When we use the term related in this problem description, we do not necessarily mean related in the

relational sense that one commonly thinks about. There is no referential integrity issue in our scenario. Rather, we

are instituting a business rule that says that employees automatically get salary bumps in response to changing

salary ranges. Not all businesses would choose to institute such a rule. In fact, we suspect most businesses would

not do such a thing.

Solution
Create an AFTER UPDATE trigger on the primary table. In our example, create such a trigger to be executed
after the JOBS table has been updated. This trigger will obtain the updated salary from the JOBS table and
modify the data within the EMPLOYEES table accordingly.

CREATE OR REPLACE TRIGGER job_salary_update
AFTER UPDATE
 ON jobs
FOR EACH ROW
DECLARE

 CURSOR emp_cur IS
 SELECT * FROM employees
 WHERE job_id = :new.job_id
 AND salary < :new.min_salary FOR UPDATE;

 emp_rec emp_cur%ROWTYPE;

CHAPTER 5 TRIGGERS

96

BEGIN

 FOR emp_rec IN emp_cur LOOP
 UPDATE employees
 SET salary = :new.min_salary
 WHERE CURRENT OF emp_cur;
 END LOOP;

END;

Since this example uses an AFTER UPDATE trigger, you have access to both the :NEW and :OLD data value

qualifiers. This can be very advantageous, as you’ll learn in the next section.

How It Works
The update trigger provides the same type of functionality as an INSERT trigger. The syntax for an update
trigger is almost identical to that of an insert trigger, other than the BEFORE UPDATE or AFTER UPDATE
clause. A BEFORE UPDATE trigger is executed prior to an update on a database table. On the contrary, the
AFTER UPDATE executes after an update has been made to a table.

The optional FOR EACH ROW clause can make a great deal of difference when issuing an update
trigger. If used, this clause tells Oracle to execute the trigger one time for every row that is updated. This
is quite useful for capturing or modifying data as it is being updated. If the FOR EACH ROW clause is
omitted, the trigger is executed one time either prior to or after the UPDATE has taken place. Without the
FOR EACH ROW clause, the trigger is not executed once for each row but rather one time only for each
UPDATE statement that is issued.

As mentioned previously in this recipe, update triggers have access to the :OLD and :NEW qualifiers.
The qualifiers allow the trigger to obtain the values of data that are being updated prior to (:OLD) and
after (:NEW) the update has been made. Generally, update triggers are most useful for obtaining and
modifying data values as the update is occurring. Update triggers, along with every other type of trigger,
should be used judiciously because too many triggers on a table can become problematic.

For example, the solution to this recipe demonstrates a trigger in which a salary change in the JOBS
table causes a trigger to execute. The trigger will be executed only if the JOBS table is updated. The cursor
that is declared will select all the records within the EMPLOYEES table that contain a SALARY that is lower
than the new MIN_SALARY for the corresponding JOB_ID. In the body of the trigger, the cursor result set is
iterated, and each record is updated so that the SALARY is adjusted to the new MIN_SALARY amount for that
job.

If that trigger contains another update statement that modifies values in the EMPLOYEES table, then
you must be sure that the EMPLOYEES table does not contain an update trigger that modifies values within
the JOBS table. Otherwise, a vicious cycle could occur in which one trigger is causing another trigger to
execute, which in turn causes the initial trigger to execute again, and so on. This may even cause an
ORA-xxxxx error if Oracle detects a recursive loop.

Update triggers can provide the best of both worlds because you have access to data values before
and after they have been updated.

3

 CHAPTER 5 TRIGGERS

97

5-3. Responding to an Update of a Specific Table Column

Problem
You want to automatically update some particular values within a table based upon another update that
has been made on a specific column of another table. For instance, assume that management has
decided to change some positions around within your organization. A new manager is coming to one of
the current manager positions, so several employees will receive a new manager. You need to find a way
to update several employee records to change their manager from the old one to the new one.

Solution
Create an AFTER UPDATE trigger that will be executed only when the MANAGER_ID column is updated. The
following trigger uses a cursor to obtain the employees that are supervised by the old manager. The
trigger then determines whether the MANAGER_ID column has been updated, and if so, it loops through
each employee who has the old manager in their record, and it updates the MANAGER_ID column to reflect
the new manager’s ID.

CREATE OR REPLACE TRIGGER dept_mgr_update
AFTER UPDATE OF manager_id
 ON departments
FOR EACH ROW
DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM EMPLOYEES
 WHERE manager_id = :old.manager_id
 FOR UPDATE;
BEGIN

 FOR emp_rec IN emp_cur LOOP
 UPDATE employees
 SET manager_id = :new.manager_id
 WHERE CURRENT OF emp_cur;
 END LOOP;

END;

This trigger will be executed only if the MANAGER_ID column of the DEPARTMENTS table is updated.

Triggers that have this ability provide for better database performance, because the trigger is not
executed each time the DEPARTMENTS table has been updated.

How It Works
Triggers can specify columns that must have their values updated in order to cause the trigger to
execute. This allows the developer to have finer-grained control over when the trigger executes. You can
take a few different strategies in order to cause a trigger to execute upon an update of a specified
column. As is demonstrated in the solution to this recipe, you can specify the column in the trigger
declaration. This is one of the easiest approaches to take, and it causes the trigger to execute only if that

CHAPTER 5 TRIGGERS

98

specified column is updated. Alternatively, you can use a conditional predicate in the trigger body to
determine whether the row you had specified in the declaration is indeed being updated. A conditional
predicate can be used along with a specified column name to determine whether a specified action is
being performed on the named column. You can use three conditional predicates, INSERTING, UPDATING,
and DELETING. Therefore, a conditional predicate such as the following can be used to determine whether
a specified column is being updated by the current statement:

IF UPDATING ('my_column') THEN
 -- Some statements
END IF;

Using a conditional predicate ensures that the code in the THEN clause is executed only if a specified

action is occurring against the named column. These predicates can also be used along with other
conditions to have finer-grained control over your statements. For instance, if you want to ensure that a
column was being updated and also that the current date does not match some end date, then you can
combine those two conditions with an AND boolean operator. The following code demonstrates this type
of conditional statement:

IF UPDATING ('my_column') AND end_date > SYSDATE THEN
 -- Some statements
END IF;

If you prefer to use the technique demonstrated in the solution to this recipe, then you can still

check to ensure that the specified column is being updated by using the IF UPDATING predicate without
the column name specified. This technique would look like the following statement:

IF UPDATING THEN
 --some statements
END IF;

As mentioned in the solution to this recipe, specifying a specific column can help decrease the

amount of times that the trigger is fired because it is executed only when the specified column has been
updated. Another advantage to using this level of constraint within your triggers is that you can add
more triggers to the table if needed. For instance, if you needed to create another trigger to fire AFTER
UPDATE on another column on the same table, then it would be possible to do so with less chance of a
conflict. On the contrary, if you were using a simple AFTER UPDATE trigger, then chances of a conflict are
more likely to occur.

5-4. Making a View Updatable

Problem
You are working with a database view, and it needs to be updated. However, the view is not a simple
view and is therefore read-only. If you tried to update a column value on the view, then you would
receive an error.

Solution
Use an INSTEAD OF trigger to specify the result of an update against the view, thus making the view
updatable. For example, let’s begin with the following view definition:

 CHAPTER 5 TRIGGERS

99

CREATE OR REPLACE VIEW EMP_JOB_VIEW AS
 SELECT EMP.employee_ID, EMP.first_name, EMP.last_name,
 EMP.email, JOB.job_title,
 DEPT.department_name
 FROM employees EMP,
 jobs JOB,
 departments DEPT
 WHERE JOB.job_id = EMP.job_id
 AND DEPT.department_id = EMP.department_id
 ORDER BY EMP.last_name;

Given the EMP_JOB_VIEW just shown, if you attempt to make an update to a column, then you will

receive an error. The following demonstrates the consequences of attempting to update the
DEPARTMENT_NAME column of the view.

SQL> update emp_job_view
 2 set department_name = 'dept'
 3 where department_name = 'Sales';
where department_name = 'Sales'
 *
ERROR at line 3:
ORA-01779: cannot modify a column which maps to a non key-preserved table

However, using the INSTEAD OF clause, you can create a trigger to implement the logic for an UPDATE

statement issued against the view. Here’s an example:

CREATE OR REPLACE TRIGGER update_emp_view
INSTEAD OF UPDATE ON emp_job_view
REFERENCING NEW AS NEW
FOR EACH ROW
DECLARE
 emp_rec employees%ROWTYPE;

 title jobs.job_title%TYPE;
 dept_name departments.department_name%TYPE;
BEGIN

 SELECT *
 INTO emp_rec
 FROM employees
 WHERE employee_id = :new.employee_id;

 UPDATE jobs
 SET job_title = :new.job_title
 WHERE job_id = emp_rec.job_id;

 UPDATE departments
 SET department_name = :new.department_name
 WHERE department_id = emp_rec.department_id;

 UPDATE employees
 SET email = :new.email,

CHAPTER 5 TRIGGERS

100

 first_name = :new.first_name,
 last_name = :new.last_name
 WHERE employee_id = :new.employee_id;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No matching record exists');

END;

The following are the results of issuing an update on the view when the UPDATE_EMP_VIEW trigger is in
place. The UPDATE is issued, and the INSTEAD OF trigger executes instead of the database’s built-in logic.
The result is that the rows containing a DEPARTMENT_NAME of Sales will be updated in the view. Hence, the
underlying row in the DEPARTMENTS table is updated to reflect the change.

SQL> update emp_job_view
 2 set department_name = 'Sales Dept'
 3 where department_name = 'Sales';

34 rows updated.

If you were to query the view after performing the update, then you would see that the view data has
been updated to reflect the requested change. If you read through the code in the trigger body, you can
see the magician behind the curtain.

How It Works
Oftentimes it is beneficial to have access to view data via a trigger event. However, there are some views
that are read-only, and data manipulation is not allowed. Views that include any of the following
constructs are not updatable and therefore require the use of an INSTEAD OF trigger for manipulation:

• SET

• DISTINCT

• GROUP BY, ORDER BY, CONNECT BY

• MODEL

• START WITH

• Subquery within a SELECT or containing the WITH READ ONLY clause

• Collection expressions

• Aggregate or analytic functions

A trigger that has been created with the INSTEAD OF clause allows you to declare a view name to be acted
upon, and then once the specified event occurs, the trigger is fired, which causes the actual INSERT,
UPDATE, or DELETE statement to occur. The trigger body actually acts upon the real tables behind the
scenes using the values that have been specified in the action.

The format for the INSTEAD OF trigger is the same as any other trigger with the addition of the
INSTEAD OF clause. You can see in the solution to this recipe that an additional clause has been specified,
namely, REFERENCING NEW AS NEW. The REFERENCING clause can be used by triggers to specify how you

 CHAPTER 5 TRIGGERS

101

want to prefix :NEW or :OLD values. This allows you to use any alias for :NEW or :OLD, so it is possible to
reference a new value using :blah.my_value if you used the following clause when you declared your
trigger:

REFERENCING NEW AS BLAH

Although there is no real magic at work behind an INSTEAD OF trigger, they do abstract some of the

implementation details away from the typical user such that working with a view is no different from
working with an actual table.

5-5. Altering the Functionality of Applications

Problem
You want to modify a third-party application, but you are not in a position to change the source code.
Either you are not allowed to change the source or you simply do not have access to make changes.

As an example, let’s consider a form in one application used to create jobs within the JOBS table. You
want to enhance the application so that mail is sent to all the administrative staff members when a new
job is created. However, your company does not own the license to modify the source code of the
application.

Solution
You can often use triggers to add functionality to an application behind the scenes, without modifying
application code. Sometimes you have to think creatively to come up with a trigger or blend of triggers
that accomplishes your goal.
You can solve our example problem by creating a trigger that will execute after an insert has been made
on the JOBS table. This trigger will obtain the information regarding the job that was just created and
send an e-mail containing that information to all administrative personnel. In the following trigger,
some necessary information regarding the new job entry is obtained and processed by the SEND_EMAIL
procedure, which in turn sends the mail.

First, here is the code for the trigger:

CREATE OR REPLACE TRIGGER send_job_alert
 AFTER INSERT ON jobs
 FOR EACH ROW
DECLARE
 to_address varchar2(50) := 'admin_list@mycompany.com';
 v_subject varchar2(100) := 'New job created: ' || :new.job_title;
 v_message varchar2(2000);
BEGIN

 v_message := 'There has been a new job created with an ID of ' || :new.job_id ||
 ' and a title of ' || :new.job_title || '. The salary range is: ' ||
 :new.min_salary || ' – ' || :new.max_salary;
 -- Initiate the send_email procedure
 SEND_EMAIL(to_address, v_subject, v_message);

END;

mailto:list@mycompany.com

CHAPTER 5 TRIGGERS

102

Next is the stored procedure that actually sends the e-mail:

CREATE OR REPLACE PROCEDURE send_email(to_address IN VARCHAR2,
 subject IN VARCHAR2,
 message IN VARCHAR2) AS
BEGIN
 UTL_MAIL.send(sender => 'me@address.com',
 recipients => to_address,
 subject => subject,
 message => message,
 mime_type => 'text; charset=us-ascii');
END;

A trigger has the ability to call any other PL/SQL named block as long as it is in the same schema or

the schema that contains the trigger has the correct privileges to access the named block in the other
schema.

How It Works
The ability to use triggers for altering third-party applications can be extremely beneficial. Using a DML
trigger on INSERT, UPDATE, or DELETE of a particular table is a good way to control what occurs with
application data once a database event occurs. This technique will be transparent to any application
users because the trigger would most likely be executed when the user saves a record via a button that is
built into the application.

Although creating database triggers to alter functionality can be beneficial, you must also be careful
not to create a trigger that will have an adverse effect on the application. For instance, if you create a
trigger that updates some data that has been entered and the application is expecting to do something
different with the data, then the application may not work as expected. One way to remedy this issue
would be to create an autonomous transaction. Autonomous transactions ensure that an application
continues to run even if a dependent body of code fails. In this case, an autonomous transaction could
prevent a failed trigger from crashing an application. To learn more about using autonomous
transactions, please refer to Recipe 2-13.

Another issue that could arise is one where too many triggers are created on the same table for the
same event. You must be careful when creating triggers and be aware of all other triggers that will be
executed during the same event. By default, Oracle does not fire triggers in any specific order, and the
execution order can vary each time the database event occurs. Do not create triggers that depend upon
other triggers, because your application will eventually fail! If you must create two or more triggers that
execute on the same table for the same event, then please ensure that you are using proper techniques
to make the triggers execute in the correct order. For more information on this topic, please refer to
Recipe 5-11.

The trigger in this particular recipe called a stored procedure. This was done so that the trigger body
performed a specific task and remained concise. Triggers can call as many stored procedures as
required, as long as the trigger itself is less than or equal to 32KB in size. The stored procedure in the
solution to this recipe is used to send an e-mail. As such, maintaining a separate procedure to perform
the task of sending e-mail will allow the trigger body to remain concise, and the procedure can also be
used elsewhere if needed.

mailto:me@address.com

 CHAPTER 5 TRIGGERS

103

USING ORACLE’S UTL_MAIL PACKAGE

The e-mail in the solution to this recipe is sent using Oracle’s UTL_MAIL package. You will learn more

about using this package in a later chapter, but for the purposes of testing this recipe, it is important to

know that the UTL_MAIL package is not enabled by default. To install it, you must log in as the SYS user

and execute the utlmail.sql and prvtmail.plb scripts that reside within the

$ORACLE_HOME/rdbms/admin directory.

An outgoing mail server must also be defined by setting the SMTP_OUT_SERVER initialization parameter

prior to use.

5-6. Validating Input Data

Problem
You want to validate data before allowing it to be inserted into a table. If the input data does not pass
your business-rules test, you want the INSERT statement to fail. For example, you want to ensure that an
e-mail address field in the EMPLOYEE table never contains the domain portion of an e-mail address, in
other words, that it never contains the @ character or anything following the @ character.

■ Note Recipe 5-7 presents an alternative solution to this same problem that involves silently cleansing erroneous

data as it is inserted.

Solution
Generally speaking, do validation using BEFORE triggers, because that lets you trap errors prior to changes
being made to the data. For this recipe, you can write a BEFORE INSERT trigger to examine the e-mail
address for any new employee. Raise an error if that address contains an @ character. The following
example demonstrates a trigger that uses this technique. If an attempt to enter an invalid e-mail address
occurs, an error will be raised.

CREATE OR REPLACE TRIGGER check_email_address
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
 IF NOT INSTR(:new.email,'@') > 0 THEN
 RAISE_APPLICATION_ERROR(-20001, 'INVALID EMAIL ADDRESS');
 END IF;
END;

CHAPTER 5 TRIGGERS

104

How It Works
A BEFORE INSERT trigger is useful for performing the validation of data before it is inserted into the
database. In the solution to this recipe, a trigger is created that will check to ensure that a string that
supposedly contains an e-mail address does indeed have an @ character within it. The trigger uses the
Oracle built-in INSTR function inside a conditional statement to determine whether the @ character
exists. If the character does not exist within the string, then the trigger will raise a user-defined error
message. On the other hand, if the string does contain the character, then the trigger will not do
anything.

Coding a trigger for validation of data is quite common. Although the solution to this recipe checks
to ensure that an e-mail address is valid, you could write similar triggers to perform similar validation on
other datatypes.

5-7. Scrubbing Input Data

Problem
You are interested in examining and correcting user input prior to it being inserted into a database table.

Solution
Use a BEFORE INSERT trigger to scrub the data prior to allowing it to be inserted into the table. By using a
trigger, you will have access to the data before it is inserted, which will provide you with the ability to
assess the data before it is persisted.

In this particular example, a trigger is being used to examine the data that was entered on a form for
insertion into the EMPLOYEES table. The e-mail field is being validated to ensure that it is in a valid format.
In particular, the e-mail field for the EMPLOYEES table includes only the address portion to the left of the @
symbol. This trigger ensures that even if someone had entered the entire e-mail address, then only the
valid portion would be inserted into the database. The following example demonstrates this
functionality:

CREATE OR REPLACE TRIGGER check_email_address
BEFORE INSERT ON employees
FOR EACH ROW
DECLARE
 temp_email employees.email%TYPE := :new.email;
BEGIN
 IF INSTR(temp_email,'@') > 0 THEN
 temp_email := SUBSTR(:new.email, 0, INSTR(temp_email, '@')-1);
 END IF;
 :new.email := temp_email;
END;

The trigger in this example uses a couple of different PL/SQL built-in functions to ensure that the

data being inserted into the EMPLOYEES.EMAIL table is formatted correctly.

How It Works
BEFORE INSERT triggers work very nicely for verifying data prior to inserting it into the database. Since
insert triggers have access to the :NEW qualifier, the values that are going to be inserted into the database

 CHAPTER 5 TRIGGERS

105

table can be tested to ensure that they conform to the proper standards and can then be manipulated if
need be. When used in a BEFORE trigger, the :NEW value can be altered, allowing triggers to change values
prior to when they are inserted. The :OLD qualifier will allow one to access the NULL old values, but they
cannot be changed.

Validating data with triggers can be very useful if used appropriately. As a rule of thumb, you should
not attempt to create triggers for validating data that can be performed declaratively. For instance, if you
need to ensure that a column of data is never NULL, then you should place a NOT NULL constraint on that
column. There are only a couple of circumstances where you are required to enforce constraints within
triggers, and those are as follows:

• If you do not have access to the database objects to alter the table and add
constraints because doing so would cause issues with a program that is in place

• If the business logic cannot be reflected in a simple, declarative trigger

• If your application requires a constraint to be enforced only part of the time

In all other circumstances, try to use database-level constraints because that is their job, and it can

be done much more efficiently than using a trigger. However, trigger validation is perfect for situations
such as those depicted in the solution to this recipe, where complex business rules must be validated
that are not possible with built-in constraints.

5-8. Replacing a Column’s Value

Problem
You want to verify that a column value is in the correct format when it is entered into the database. If it
is not in the correct format, then you want to adjust the value so that it is in the correct format before
inserting into the database. For example, upon creation of an employee record, it is essential that the e-
mail address follows a certain format. If the e-mail address is not uniform with other employee e-mail
addresses, then it needs to be adjusted. You want to write a trigger that ensures that the new employee
EMAIL value will be in the correct format.

Solution
Check the format using a BEFORE trigger. For this recipe, use a BEFORE INSERT trigger to determine
whether the new EMAIL value is in the correct format. If it is not, then adjust the value accordingly so that
the new e-mail address will start with the first letter of the employee’s first name, followed by the
employee’s last name. If the new e-mail address is not unique, then a number must be added to the end
of it to ensure that it will be unique.

The following trigger demonstrates a BEFORE INSERT trigger that checks and updates the EMAIL value
as described. This trigger will be fired whenever someone inserts values into the EMPLOYEES table.

CREATE OR REPLACE TRIGGER populate_emp_email
BEFORE INSERT ON employees
FOR EACH ROW
DECLARE
 email_count NUMBER := 0;
 success_flag BOOLEAN := FALSE;
 temp_email employees.email%TYPE;
 email_idx NUMBER := 0;

CHAPTER 5 TRIGGERS

106

BEGIN
 -- check to see if the email address is in the correct format
 IF :new.email != UPPER(SUBSTR(:new.first_name,0,1) || :new.last_name) THEN
 -- check the database to ensure that the new email address will be unique
 temp_email := UPPER(SUBSTR(:new.first_name,0,1) || :new.last_name);
 WHILE success_flag = FALSE LOOP
 SELECT COUNT(*)
 INTO email_count
 FROM employees
 WHERE email = temp_email;

 -- if it is unique then end the loop
 IF email_count = 0 THEN
 success_flag := TRUE;
 -- if not unique, then add the index number to the end and check again
 ELSE
 temp_email := UPPER(SUBSTR(:new.first_name,0,1) || :new.last_name) || email_idx;
 END IF;
 email_idx := email_idx + 1;
 END LOOP;
 :new.email := temp_email;
 END IF;

END;

The value of the e-mail address must always follow the same format, and this trigger ensures that

the any new EMAIL values will follow that format. If the new EMAIL value does follow the correct format,
then it will be inserted into the database without changes, but if it does not follow the correct format,
then this trigger will adjust the value accordingly.

How It Works
Another frequent usage of triggers is to replace a value that someone is trying to insert into the database
with some other value. Much like ensuring data integrity, you must write to the :NEW qualifier value in
order to replace another value that was entered. When the :NEW value is overwritten, then that new value
is inserted into the database instead of the original value. The BEFORE trigger acts as an interceptor where
the values that are entered are intercepted prior to reaching the database table. The trigger has full reign
to change values as needed as long as the values that are changed by the trigger still maintain the
necessary requirements to meet the database table constraints that have been defined.

Any DML trigger can include multiple trigger events, including INSERT, UPDATE, or DELETE events. Any
combination of these three events can be used to fire a trigger. The events that are to be used for firing a
trigger must be listed with the OR keyword between them. The following line of code is an example of
using all three events on a BEFORE trigger:

BEFORE INSERT OR UPDATE OR DELETE ON employees

The events can be in any order within the BEFORE clause. Any combination of these three events can

also be used with the AFTER trigger. The main difference between the BEFORE and AFTER triggers is what
type of access each has to the :NEW and :OLD qualifiers. Table 4-1 lists the different types of triggers and
their subsequent access to the qualifiers.

 CHAPTER 5 TRIGGERS

107

Table 4-1. Trigger Types and Qualifier Acccess

Trigger Type :NEW :OLD

BEFORE Writeable Always contains NULL

AFTER Not writeable Always contains populated values

INSERT Contains values Contains NULL

DELETE Contains NULL Contains populated values

UPDATE Contains populated values Contains populated values

A BEFORE trigger has write access to values using the :NEW qualifier, and AFTER triggers do not since

the data has already been inserted or updated in the table. INSERT triggers have meaningful access to
values with the :NEW qualifier only; variables using the :OLD qualifier will be NULL. UPDATE triggers have
meaningful access to values using both the :NEW and :OLD qualifiers. DELETE triggers have meaningful
access only to values using the :old qualifier; values using the :new qualifier will be NULL.

Performing tasks such as replacing values with triggers should be used only on an as-needed basis.
This type of trigger can cause confusion for those who do not have access to the trigger code. It is also
important to ensure that triggers do not act upon each other in order to avoid mutating table errors. This
can occur if one trigger is updating the values of a table and another trigger is attempting to examine the
values of the table at the same time.

5-9. Triggering on a System Event

Problem
You want to write a trigger that executes on a system event such as a login. For example, you want to
increase security a bit for your database and ensure that users are logging into the database only during
the week. In an effort to help control security, you want to receive an e-mail alert if someone logs into
the database on the weekend.

Solution
Create a system-level trigger that will log an event into a table if anyone logs into the database during off-
hours. To notify you as promptly as possible, it may also be a good idea to send an e-mail when this
event occurs. To create a system-level trigger, use the AFTER LOGON ON DATABASE clause in your trigger
definition.

The first step in creating this solution is to create an audit table. In the audit table you will want to
capture the IP address of the user’s machine, the time and date of the login, and the authenticated
username. The following code will create a table to hold this information:

CREATE TABLE login_audit_table(
ID NUMBER PRIMARY KEY, -- Populated by sequence number
login_audit_seq
AUDIT_DATE DATE NOT NULL,

CHAPTER 5 TRIGGERS

108

AUDIT_USER VARCHAR2(50) NOT NULL,
AUDIT_IP VARCHAR2(50) NOT NULL,
AUDIT_HOST VARCHAR2(50) NOT NULL);

Now that the auditing table has been created, it is time to create the trigger. The following code

demonstrates the creation of a logon trigger:

CREATE OR REPLACE TRIGGER login_audit_event
AFTER LOGON ON DATABASE
DECLARE
 v_subject VARCHAR2(100) := 'User login audit event triggered';
 v_message VARCHAR2(1000);
BEGIN
 INSERT INTO login_audit_table values(
 Login_audit_seq.nextval,
 Sysdate,
 SYS_CONTEXT('USERENV','SESSION_USERID'),
 SYS_CONTEXT('USERENV','IP_ADDRESS'),
 SYS_CONTEXT('USERENV','HOST'));
 v_message := 'User ' || SYS_CONTEXT('USERENV','SESSION_USERID') ||
 ' logged into the database at ' || sysdate || ' from host ' ||
 SYS_CONTEXT('USERENV','HOST');

 SEND_email('DBA-GROUP@mycompany.com',
 v_subject,
 v_message);

END;

This simple trigger will fire each time someone logs into the database. To reduce the overhead of

this trigger being initiated during normal business hours, this trigger should be disabled during normal
business hours. It is possible to create a stored procedure that disables and enables the trigger and then
schedule that procedure to be executed at certain times. However, if there are only a few users who will
be logging into the database each day, then trigger controls such as these are not necessary.

How It Works
Triggers are a great way to audit system events on a database. There are several types of system triggers:

• AFTER STARTUP

• BEFORE SHUTDOWN

• AFTER LOGON

• BEFORE LOGOFF

• AFTER SUSPEND

• AFTER SERVERERROR

• AFTER DB_ROLE_CHANGE

mailto:GROUP@mycompany.com

 CHAPTER 5 TRIGGERS

109

Each of these system events can be correlated to a trigger when the trigger includes the ON DATABASE
clause, as shown here:

CREATE OR REPLACE system_trigger
trigger_type ON DATABASE
…

System triggers fire once for each correlating system event that occurs. Therefore, if there is a system

trigger defined for both the LOGON and LOGOFF events, each will be fired one time for every user who logs
onto or off the database. System triggers are excellent tools for helping audit database system events.
Notice that the different system events have access only to certain types of events. For instance, STARTUP
triggers can be fired only after the event occurs. This is because the Oracle Database is not available
before STARTUP, so it would be impossible to fire a trigger beforehand. Similarly, SHUTDOWN triggers have
access to the BEFORE event only because the database is unavailable after SHUTDOWN.

In the solution to this recipe, the trigger is intended to execute once after each login to the database.
The trigger will insert some values from the current session into an auditing table, and it will send an e-
mail to the DBA group. It should be noted that Oracle Database provides some auditing capabilities to
perform similar activities right out of the box. In fact, Oracle 11g turns on auditing by default for every
database. However, the auditing options that are available via Oracle do not allow for sending e-mail as
our solution does. You may prefer to use Oracle’s internal auditing features for storing the audit trail and
combine them with auditing triggers such as the one in this recipe for simply sending an e-mail when
the event occurs.

The SERVERERROR event is fired whenever an Oracle server error occurs. The SERVERERROR event can
be useful for detecting user SQL errors or logging system errors. However, there are a few cases in which
an Oracle server error does not trigger this event. Those Oracle errors are as follows:

• ORA-01403: No data found

• ORA-01422: Exact fetch returns more than requested number of rows

• ORA-01423: Error encountered while checking for extra rows in exact fetch

• ORA-01034: ORACLE not available

• ORA-04030: Out of process memory when trying to allocate bytes

System event triggers can assist a DBA in administration of the database. These triggers can also

help developers if SQL errors are triggering SERVERERROR events and notifying of possible SQL problems
in the application.

5-10. Triggering on a Schema-Related Event

Problem
You want to trigger on an event related to a change in a database schema. For example, if someone drops
a database table on accident, it could cause much time and grief attempting to restore and recover data
to its original state. Rather than doing so, you want to place a control mechanism into the database that
will ensure that administrators cannot delete essential tables.

CHAPTER 5 TRIGGERS

110

Solution
Use a PL/SQL database trigger to raise an exception and send an alert to the DBA if someone attempts to
drop a table. This will prevent any tables from inadvertently being dropped, and it will also allow the
administrator to know whether someone is potentially trying to drop tables.

CREATE OR REPLACE TRIGGER ddl_trigger
BEFORE CREATE OR ALTER OR DROP
ON SCHEMA
DECLARE
 evt VARCHAR2(2000);
 v_subject VARCHAR2(100) := 'Drop table attempt';
 v_message VARCHAR2(1000);
BEGIN
 SELECT ora_sysevent
 INTO evt
 FROM dual;

 IF evt = 'DROP' THEN
 RAISE_APPLICATION_ERROR(-20900, 'UNABLE TO DROP TABLE, ' ||
 'EVENT HAS BEEN LOGGED');
 END IF;
 v_message := 'Table drop attempted by: '||
 SYS_CONTEXT('USERENV','SESSION_USERID');
 SEND_EMAIL('DBA-GROUP@mycompany.com',
 v_subject,
 v_message);
END;

In this situation, both the user who attempts to drop the table and the members of the DBA-GROUP
mailing list will be notified.

How It Works
You can use triggers to log or prevent certain database activities from occurring. In this recipe, you saw
how to create a trigger that will prevent a table from being dropped. The trigger will be executed prior to
any CREATE, ALTER, or DROP within the current schema. Within the body of the trigger, the event is checked
to see whether it is a DROP, and actions are taken if so.

■ Note To be even more fine-grained, it is possible to specify a particular schema for the trigger to use. Doing so

would look like the following:

BEFORE CREATE ALTER OR DROP ON HR.SCHEMA

…

mailto:GROUP@mycompany.com

 CHAPTER 5 TRIGGERS

111

There are several other DDL trigger operations that can be used to help administer a database or
application. The following are these operations along with the type of trigger that can be used with it:

BEFORE / AFTER ALTER
BEFORE / AFTER ANALYZE
BEFORE / AFTER ASSOCIATE STATISTICS
BEFORE / AFTER AUDIT
BEFORE / AFTER COMMENT
BEFORE / AFTER CREATE
BEFORE / AFTER DDL
BEFORE / AFTER DISASSOCIATE STATISTICS
BEFORE / AFTER DROP
BEFORE / AFTER GRANT
BEFORE / AFTER NOAUDIT
BEFORE / AFTER RENAME
BEFORE / AFTER REVOKE
BEFORE / AFTER TRUNCATE
AFTER SUSPEND

All DDL triggers can be fired using either BEFORE or AFTER event types. In most cases, triggers that are

fired before a DDL event occurs are used to prevent the event from happening. On the other hand,
triggers that are fired after an event occurs usually log information or send an e-mail. In the solution to
this recipe, a combination of those two situations exists. The BEFORE event type was used because the
trigger is being used to prevent the tables from being dropped. However, logging or e-mailing can also
occur to advise interested parties of the event. Typically a logging event occurs with an AFTER trigger so
that the event has already occurred and the database is in a consistent state prior to the logging.

5-11. Firing Two Triggers on the Same Event

Problem
There is a requirement to create a trigger to enter the SYSDATE into the HIRE_DATE column of the
LOCATIONS table. However, there is already a trigger in place that is fired BEFORE INSERT on the table, and
you do not want the two triggers to conflict.

Solution
Use the FOLLOWS clause to ensure the ordering of the execution of the triggers. The following example
shows the creation of two triggers that are to be executed BEFORE INSERT on the EMPLOYEES table.

First, we’ll create a trigger to verify that a new employee’s salary falls within range:

CREATE OR REPLACE TRIGGER verify_emp_salary
BEFORE INSERT ON employees
FOR EACH ROW
DECLARE
 v_min_sal jobs.min_salary%TYPE;
 v_max_sal jobs.max_salary%TYPE;
BEGIN
 SELECT min_salary, max_salary
 INTO v_min_sal, v_max_sal

CHAPTER 5 TRIGGERS

112

 FROM JOBS
 WHERE JOB_ID = :new.JOB_ID;

 IF :new.salary > v_max_sal THEN
 RAISE_APPLICATION_ERROR(-20901,
 'You cannot give a salary greater than the max in this category');
 ELSIF :new.salary < v_min_sal THEN
 RAISE_APPLICATION_ERROR(-20902,
 'You cannot give a salary less than the min in this category');
 END IF;
END;

Next, you’ll create a trigger to force the hire date to be the current date:

CREATE or REPLACE TRIGGER populate_hire_date
BEFORE INSERT
 ON employees
 FOR EACH ROW
FOLLOWS verify_emp_salary
DECLARE
BEGIN
 :new.hire_date := sysdate;
END;

Since it does not make sense to change the hire date if the record will not be inserted, you want the

VERIFY_EMP_SALARY trigger to fire first. The FOLLOWS clause in the POPULATE_HIRE_DATE trigger ensures that
this will be the case.

How It Works
Oracle 11g introduced the FOLLOWS clause into the Oracle trigger that allows you to specify the ordering in
which triggers should execute. The FOLLOWS clause specifies the trigger that should fire prior to the trigger
being created. In other words, if you specify the FOLLOWS clause when creating a trigger, then you should
name a trigger that you want to have executed prior to your new trigger. Hence, if you specify a trigger in
the FOLLOWS clause that does not already exist, you will receive a compile error.

■ Note The PRECEDES clause was introduced in Oracle 11g as well. You can use this clause to specify the

opposite situation that is resolved using the FOLLOWS clause. If you specify PRECEDES instead of FOLLOWS, then the

trigger being created will fire prior to the trigger that you specify after the PRECEDES clause.

By default, Oracle triggers fire in any arbitrary ordering. In the past, there was no way to guarantee
the order in which triggers were to be executed. The addition of the FOLLOWS clause now allows you to do
so. However, it is important that you do not make triggers dependent upon each other. Doing so could
cause issues of one of the triggers were to be dropped for some reason. It is bad design to create a trigger
that depends on the successful completion of another trigger, so the FOLLOWS clause should be used only
in situations where there is no dependency.

 CHAPTER 5 TRIGGERS

113

5-12. Creating a Trigger That Fires on Multiple Events

Problem
You have logic that is very similar for two different events. Thus, you want to combine that logic into a
single trigger that fires for both. For example, let’s assume that we want to create a single trigger on the
EMPLOYEES table with code to fire after each row that is inserted or modified and also with code to fire at
the end of each of those statements’ executions.

Solution
Use a compound trigger to combine all the triggers into a single body of code. The trigger in this solution
will execute based upon various timing points. It will execute AFTER EACH ROW in the EMPLOYEES table has
been updated, as well as AFTER the entire update statement has been executed. The AFTER EACH ROW
section of the trigger will audit the inserts and updates made on the table, and the AFTER STATEMENT
section of the trigger will send notification to the DBA regarding audits that have occurred on the table.

The following code shows the creation of a compound trigger that comprises each of these two
triggers into one body of code:

CREATE OR REPLACE TRIGGER emp_table_auditing
 FOR INSERT OR UPDATE ON employees
 COMPOUND TRIGGER
 -- Global variable section
 table_upd_count NUMBER := 0;
 table_id_start employees.employee_id%TYPE;

 AFTER EACH ROW IS
 BEGIN
 SELECT MAX(employee_id)
 INTO table_id_start
 FROM employees;

 IF INSERTING THEN

 INSERT INTO update_access_log VALUES(
 update_access_seq.nextval,
 SYS_CONTEXT('USERENV','SESSION_USER'),
 sysdate,
 NULL,
 :new.salary,
 'EMPLOYEES - INSERT',
 'SALARY');
 table_upd_count := table_upd_count + 1;

 ELSIF UPDATING THEN
 IF :old.salary != :new.salary THEN
 INSERT INTO update_access_log VALUES(
 update_access_seq.nextval,
 SYS_CONTEXT('USERENV','SESSION_USER'),

CHAPTER 5 TRIGGERS

114

 sysdate,
 :old.salary,
 :new.salary,
 'EMPLOYEES - UPDATE',
 'SALARY');
 table_upd_count := table_upd_count + 1;
 END IF;
 END IF;

 END AFTER EACH ROW;

 AFTER STATEMENT IS
 v_subject VARCHAR2(100) := 'Employee Table Update';
 v_message VARCHAR2(2000);
 BEGIN

 v_message := 'There have been ' || table_upd_count ||
 ' changes made to the employee table starting with ID #' ||
 table_id_start;

 SEND_EMAIL('DBA-GROUP@my_company.com',
 v_subject,
 v_message);
 END AFTER STATEMENT;

END emp_table_auditing;

The insert and update events are audited via the trigger that is coded using the AFTER EACH ROW

clause, and then the AFTER STATEMENT trigger sends a notification to alert the DBA of each audit. The two
triggers share a global variable that is declared prior to the code for the first trigger.

How It Works
Prior to Oracle 11g, there was no easy way to create multiple triggers that were able to share the same global
variable. The compound trigger was introduced with the release of Oracle 11g, and it allows multiple triggers for
the same table to be embodied within a single trigger. Compound triggers allow you to code different timing
points within the same trigger; those different events are as follows in logical execution order:

• BEFORE STATEMENT

• BEFORE EACH ROW

• AFTER EACH ROW

• AFTER STATEMENT

Each of these timing points allows for the declaration of different trigger execution points. Using a

compound trigger allows you to create a trigger that performs some actions: BEFORE INSERT on a table
and AFTER INSERT on a table all within the same trigger body. In the case of the solution to this recipe, an
AFTER UPDATE trigger is coded within the same compound trigger as an AFTER STATEMENT trigger. The
logical order of execution allows you to code triggers that depend upon others using this technique. In
other recipes within this chapter, you have learned that it is not good programming practice to code

mailto:GROUP@my_company.com

 CHAPTER 5 TRIGGERS

115

triggers that depend upon each other. This is mainly because if one trigger is invalidated or dropped,
then the other trigger that depends on it will automatically be invalidated. Since a compound trigger is
one body of code, either the entire trigger is valid or invalid. Therefore, the failure points between two
trigger bodies are removed.

In the solution, the AFTER STATEMENT trigger depends upon the AFTER EACH ROW trigger. If the AFTER
EACH ROW trigger does not audit anything, then the AFTER STATEMENT trigger will still fire, but it will send
an e-mail that signifies zero rows have been changed. The two trigger bodies are able to share access to
global variables, types, and cursors via the use of the global declaration section. Anything declared
within this section is visible to all triggers within the compound trigger body, so in the case of this
solution, you can use the first AFTER EACH ROW to update the value of the global variable, which is then in
turn used within the AFTER STATEMENT trigger. The overall compound trigger structure is as follows:

CREATE OR REPLACE TRIGGER trigger-name
 FOR trigger-action ON table-name
 COMPOUND TRIGGER
 -- Global declaration section
 global_variable VARCHAR2(10);
 BEFORE STATEMENT IS
 BEGIN
 NULL;
 -- Statements go here.
 END BEFORE STATEMENT;
 BEFORE EACH ROW IS
 BEGIN
 NULL;
-- Statements go here. END BEFORE EACH ROW;
 AFTER EACH ROW IS
 BEGIN
 NULL;
-- Statements go here.
 END AFTER EACH ROW;
 AFTER STATEMENT IS
 BEGIN
 NULL;
 -- Statements go here.
 END AFTER STATEMENT;
 END trigger-name;

Compound triggers can be very useful for incorporating several different timed events on the same

database table. Not only do they allow for easier maintenance because all code resides within one trigger
body, but they also allow for shared variables among the trigger events as well as more robust
dependency management.

5-13. Creating a Trigger in a Disabled State

Problem
After a planning meeting, your company has decided that it would be a great idea to create a trigger to
send notification of updates to employee salaries. Since the trigger will be tied into the system-wide

k

CHAPTER 5 TRIGGERS

116

database application, you want to ensure that it compiles before enabling it so that it will not affect the
rest of the application.

Solution
Create a trigger that is in a disabled state by default. This will afford you the opportunity to ensure that
the trigger has compiled successfully before you enable it. Use the new DISABLE clause to ensure that
your trigger is in DISABLED state by default.

The following trigger sends messages to employees when their salary is changed. The trigger is
disabled by default to ensure that the application is not adversely affected if there is a compilation error.

CREATE OR REPLACE TRIGGER send_salary_notice
AFTER UPDATE OF SALARY ON employees
FOR EACH ROW
DISABLE
DECLARE
 v_subject VARCHAR2(100) := 'Salary Update Has Occurrred';
 v_message VARCHAR2(2000);
BEGIN
 v_message := 'Your salary has been increased from ' ||
 :old.salary || ' to ' || :new.salary || '.' ||
 'If you have any questions or complaints, please ' ||
 'do not contact the DBA.';

 SEND_EMAIL(:new.email || '@mycompany.com',
 v_subject,
 v_message);
END;

On an annual basis, this trigger can be enabled via the following syntax:

ALTER TRIGGER send_salary_notice ENABLE;

It can then be disabled again using the same syntax:

ALTER TRIGGER send_salary_notice DISABLE;

How It Works
Another welcome new feature with Oracle 11g is the ability to create triggers that are DISABLED by default.
The syntax for creating a trigger in this fashion is as follows:

CREATE OR REPLACE TRIGGER trigger_name
ON UPDATE OR INSERT OR DELETION OF table_name
[FOR EACH ROW]
DISABLED
DECLARE
 -- Declarations go here.
BEGIN
 -- Statements go here.
END;

mailto:'@mycompany.com

 CHAPTER 5 TRIGGERS

117

The new DISABLED clause is used upon creation of a trigger. By default, a trigger is ENABLED by creation,
and this clause allows for the opposite to hold true.

C H A P T E R 6

119

Type Conversion

Type conversion takes place in almost every PL/SQL program. It is important to know how to convert
from one datatype to another so that your applications can contain more versatility. Not only are
datatype conversions important to developers, but they can also be a godsend to database
administrators. Type conversion can occur when moving data around from one table to another. It is
also very common when obtaining data from input forms and performing calculations upon it.

Whatever your use may be, this chapter will get you headed into the right direction with a handful of
useful recipes. If your application works with dates or numbers, you will most likely find this chapter
useful. There are two forms of datatype conversion: explicit conversion and implicit conversion. Explicit
datatype conversion is what you will learn about in the following recipes. Using explicit conversion, you
tell Oracle how you want types to be converted. Implicit conversion is automatically performed by
Oracle. There are many datatypes that can be converted using implicit type conversion. However, it is
not recommended that you rely on implicit conversion, because you never know exactly how Oracle will
convert something. The recipes in this chapter will show you more reliable explicit conversion
techniques that will give you the ability to convert types in such a way that your application will be rock
solid.

6-1. Converting a String to a Number

Problem
You need to convert some strings into numbers. For instance, your application contains several strings
that are entered via a user input screen. These strings need to be converted into numbers so that they
can be used to perform calculations.

Solution
Use the TO_NUMBER function to explicitly convert the VARCHAR2 field into a NUMBER. The following examples
demonstrate the use of TO_NUMBER by showing how to convert some currency values taken from the user
interface into numbers for storage in the database.

The first example demonstrates the conversion of a variable with a datatype of VARCHAR2 into a
NUMBER:

DECLARE
 in_dollars VARCHAR2(10) := &dollars;
 dollars_formatted NUMBER;
BEGIN
 -- Assume that IN_DOLLARS is the user input in VARCHAR2 format
 dollars_formatted := TO_NUMBER(in_dollars, '9G999D99');
 DBMS_OUTPUT.PUT_LINE(dollars_formatted);

CHAPTER 6 TYPE CONVERSION

120

END;

The TO_NUMBER function returns a number from a VARCHAR2 format. The previous example
demonstrates the typical usage of this function.

How It Works
The TO_NUMBER function provides an explicit way to convert strings into NUMBER format in PL/SQL.
Although most string to NUMBER conversion is implicit via Oracle Database, it is always a best practice to
explicitly use the TO_NUMBER function to ensure that your code will not break at some point in the future.
The format for using the function is as follows:

TO_NUMBER(expression [, format [, 'nls']])

The expression can be a value of type BINARY_DOUBLE, CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The
optional format is a mask that can be used to help format the expression value into a number. The mask
is a string of characters that represents the format of the string value that is contained in the expression
value. Table 6-1 shows the most commonly used format mask characters:

Table 6-1. Common Formatting Mask Characters

Character Description

9 Represents a numeric character

D Represents a decimal point

G Represents a comma

Although the use of a formatting mask is optional, it is a good idea to include it if you know the
format of the string. Doing so will help Oracle convert your value into a number more accurately. Lastly,
you can use the optional nls settings to set the NLS_LANGUAGE that is to be used to convert the string, the
NLS_CURRENCY, or any of the other NLS session parameters. Use of the nls parameter is not very common.

■ Note For a complete listing of available session NLS parameters, issue the following query: SELECT * FROM

NLS_SESSION_PARAMETERS.

It is also possible to convert strings into numbers using the CAST function. However, for direct string
to number conversion, the TO_NUMBER function is the best tool for the job since it is straightforward and
easy to maintain. For more information on the CAST function, please take a look at Recipe 6-5.

 CHAPTER 6 TYPE CONVERSION

121

6-2. Converting a String to a Date

Problem
You need to convert some strings into DATE types. Let’s say you have a requirement to insert date types
into a database table column from one of your applications. The user is allowed to enter a date using
your application’s web page, but it is in a string format after the user submits the page. You need to
convert this date from a string to a date type.

Solution
Use the TO_DATE function to convert the string values into the DATE type. This will allow your application
to accept the date string in any format and convert it to a DATE type for you. The next example shows how
to use the TO_DATE function:

my_val DATE := TO_DATE('06/12/2010','MM/DD/YYYY');

You can convert the string through assignment, as shown in the preceding example, or directly

within a query, as shown in the next example:

SELECT TO_DATE(‘December 31, 2010’, ‘Month DD, YYYY’) FROM DUAL;

As you can see, it is possible to convert multiple string formats into DATE types.

How It Works
The TO_DATE function is arguably the most widely used conversion function in Oracle. Whether you are
using the function to convert dates for proper formatting within a SQL query or you are accepting and
converting user input, this function is extremely helpful for getting your data into the Oracle DATE
format. The syntax for using this function is as follows:

TO_DATE(expression[, format[,’nls’]])

The syntax is much like that of the other Oracle conversion functions in that it accepts a required

expression or string and two optional parameters. The optional format is used to specify the format of
the string and to assist Oracle in converting the value into a DATE type. Table 6-2 shows many of the more
common characters that can be used to specify the date format. See the Oracle SQL Reference for a
complete list of formatting characters.

Table 6-2. Date Formatting Characters

Character Description

MM Represents the numeric month.

MON Represents an abbreviated month name.

MONTH Represents the entire month name.

CHAPTER 6 TYPE CONVERSION

122

Character Description

DD Represents the numeric day of the month.

DY Abbreviation representing the day of the week.

YY Represents the two-digit year.

YYYY Represents the four-digit year.

RR Represents the rounded two-digit year. The year is rounded in the range 1950 to 2049 to
assist with two-digit years such as 10. A two-digit year less than 50 will result in a four-
digit year such as 2010.

AM or PM Represents the meridian indicator.

HH Represents the hour of the day in 12-hour time format.

HH24 Represents the hour of the day in 24-hour time format.

MI Represents the minutes in time.

SS Represents the seconds in time.

The standard, or default, date format in Oracle is DD-MON-YY, though your database administrator

does have the ability to change that default format. If you want to convert a string that is in the default
format into a DATE type, then the mask is not required. The following example demonstrates this
capability:

TO_DATE('27-MAY-10');

On the contrary, if you want to convert a string that is in a format that is different from the standard,

then you must make use of a mask. The solution to this recipe depicts this type of behavior. Dates are
also in care of time in Oracle, so if you want to display the time in your date, then it is possible to do so
using the proper format mask. The following conversion will include both the date and the time:

 TO_DATE('05/25/2010 07:35AM','MM/DD/YYYY HH:MIAM')

The TO_DATE conversion function is most often used when inserting or updating data. If you have a

table column that has a DATE type, then you cannot place a string into that column unless it is in the
standard date format. To get the data from an entry screen into the database, the TO_DATE function is
usually used to convert the string into a date while the value is being inserted or updated.

It is also possible to convert strings to dates using the CAST function. For more information on the
use of the CAST function, please see Recipe 6-5.

 CHAPTER 6 TYPE CONVERSION

123

6-3. Converting a Number to a String

Problem
You need to alter some numbers into a currency format for display. Given a set of numbers, your
application will perform a calculation and then convert the outcome into currency format, which will be
a string type.

Solution
Use the TO_CHAR conversion function to obtain a nicely formatted currency string. The following code
block accepts a number, performs a calculation, and then converts the number to a string:

CREATE OR REPLACE FUNCTION CALCULATE_BILL(bill_amount IN NUMBER)
 RETURN VARCHAR2 AS
 tax NUMBER := .12;
 tip NUMBER := .2;
 total_bill NUMBER := 0;
BEGIN
 total_bill := bill_amount + (bill_amount * tax);
 total_bill := total_bill + (total_bill * tip);
 return to_char(total_bill, '$999.00');
END;

When a bill amount is passed to the CALCULATE_BILL function, a nicely formatted dollar amount will

be returned. If you were to pass 24.75 to the function, it would return $33.26.

How It Works
The TO_CHAR function works much like the other Oracle TO_ conversion functions in that it accepts a
number value along with an optional format mask and nls language value. Table 6-3 describes the more
commonly used formatting mask characters for numbers.

Table 6-3. Common Formatting Mask Characters

Character Description

9 Represents a numeric character that displays only if a value is present

. Represents a decimal point

, Represents a comma

$ Represents a dollar sign

0 Represents a numeric character that will always display, even if null

As you can see from the solution to this recipe, the format mask of $999.00 is chosen. Why not use

the mask of $999.99 for the conversion? By using the 0 instead of the 9, you ensure that the cents value

CHAPTER 6 TYPE CONVERSION

124

will always be present. Even if the cents value is zero, you will still get a .00 at the end of your string.
Essentially, the 0 character forces Oracle to pad with zeros rather than spaces.

You can also pad with zero characters to the left of the decimal. Here’s an example:

select to_char(82,'0000099') from dual;

That results in the following:

0000082

It is also possible to convert numbers to strings using the CAST function, although TO_CHAR makes for

code that is easier to read and maintain. For more information on the use of the CAST function, please
see recipe 6-5.

6-4. Converting a Date to a String

Problem
You want to convert a date into a nicely formatted string value. For example, you are converting a legacy
application from another database vendor into a web-based Oracle application. A few of the fields on the
web form are dates. The users of the application expect to see the dates in a specific format, so you need
the dates to be formatted in a particular manner for display.

Solution
Use the TO_CHAR function using the date masks. The TO_CHAR function offers many formatting options for
returning a string from a DATE value. The following function accepts an EMPLOYEE_ID value and returns a
representation of the HIRE_DATE spelled out.

CREATE OR REPLACE PROCEDURE obtain_emp_hire_date(emp_id IN NUMBER)
 AS
 emp_hire_date employees.hire_date%TYPE;
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
BEGIN
 SELECT hire_date, first_name, last_name
 INTO emp_hire_date, emp_first, emp_last
 FROM employees
 WHERE employee_id = emp_id;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last ||
 ' was hired on: ' ||
 TO_CHAR(emp_hire_date, 'DAY MONTH DDTH YYYY'));
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employee found for the given ID');
END;

If you pass the employee ID of 200 to this function, then it will return a result in the following

format:

 CHAPTER 6 TYPE CONVERSION

125

Jennifer Whalen was hired on: THURSDAY SEPTEMBER 17TH 1987

PL/SQL procedure successfully completed.

How It Works
As shown in the previous recipe, the TO_CHAR function accepts a NUMBER or DATE value and returns a nicely
formatted string. Using the many formatting masks that are available, you can return a string-based
representation in a number of ways. As demonstrated in the solutions to this recipe and the previous
one, the TO_CHAR function works a bit differently than the other conversion functions because the
formatting mask is used to help produce the final string. Other conversion functions use the formatting
mask to represent the format of the string you are passing in. In other words, TO_CHAR produces the
formatted strings, whereas the other conversion functions accept them and produce a different
datatype.

Table 6-4 lists some of the most commonly used characters for converting dates into strings.

Table 6-4. Date Formatting Mask Characters

Characters Description

YYYY Represents the four-digit year

YEAR Represents the spelled-out year

YYY Represents the last three digits of the year

YY Represents the last two digits of the year

Y Represents the last digit of the year

IYY Represents the last three digits of the ISO year

IY Represents the last two digits of the ISO year

I Represents the last digit of the ISO year

Q Represents the quarter of the year

MM Represents the month of the year

MON Represents the abbreviated month name

MONTH Represents the spelled-out month name padded with blanks

RM Represents the Roman numeral month

WW Represents the week of the year

CHAPTER 6 TYPE CONVERSION

126

Characters Description

W Represents the week of the month

IW Represents the ISO week of the year

D Represents the day of the week

DAY Represents the name of the day

DD Represents the day of the month

DDD Represents the day of the year

DY Represents the abbreviated name of the day

J Represents the Julian day

HH Represents the hour of the day (1–12)

HH12 Represents the hour of the day (1–12); same as HH

HH24 Represents the hour of the day (0–23)

MI Represents the minute of the hour (0–59)

SS Represents the second (0–59)

SSSSS Represents the seconds past midnight (0–86399)

FF Represents the fractional seconds

There are several formatting options, as you can see. It is best to spend some time with each of the

different combinations to decide upon which one works best for your solution.
PL/SQL can make date formatting easy, because it is possible to create your own function that

returns a date formatted per your application’s requirements. Sometimes it is difficult to remember all
the different formatting options that are available for dates. It can also be quite painful to reference a
table such as Table 6-4 each time you want to format a date string. You can instead create your own
conversion function to support just the formats that you use, and no others. Such a function greatly
reduces the possibility for error, thus enhancing consistency in how your application formats dates.

The function in the following example accepts two parameters: the date to be converted and a string
that specifies the output format. The second argument is limited to only four, easy-to-remember values:
LONG, SHORT, STD, and DASH.

-- Returns a date string formatted per the style
-- that is passed into it. The possible style strings
-- are as follows:

 CHAPTER 6 TYPE CONVERSION

127

-- LONG => The spelled out date
-- SHORT => The abbreviated date
-- STD or blank => The standard date format mm/dd/yyyy
-- DASH => The standard format with dashes mm-dd-yyyy
CREATE OR REPLACE FUNCTION FORMAT_DATE(in_date IN DATE,
 style IN VARCHAR2)
 RETURN VARCHAR2 AS
 formatted_date VARCHAR2(100);
BEGIN
 CASE style
 WHEN 'LONG' THEN
 formatted_date := TO_CHAR(in_date, 'DAY MONTH DDTH YYYY');
 WHEN 'SHORT' THEN
 formatted_date := TO_CHAR(in_date, 'DY MON DDTH YYYY');
 WHEN 'DASH' THEN
 formatted_date := TO_CHAR(in_date, 'MM-DD-YYYY');
 ELSE
 formatted_date := TO_CHAR(in_date, 'MM/DD/YYYY');
 END CASE;
 RETURN formatted_date;
END;

This function is nice because you only need to remember a short string that is used to represent the

date format that you’d like to return.
It is also possible to convert dates to strings using the CAST function. For more information on the

use of the CAST function, please see Recipe 6-5.

6-5. Converting Strings to Timestamps

Problem
You are working with a series of strings. You want to convert them into timestamps.

Solution
Use the TO_TIMESTAMP function to convert the strings into timestamps. In this example, a trigger is
created that will log an INSERT into the JOBS table. The logging table consists of two columns. The first
column is used to store the date of the transaction, and it is of type TIMESTAMP WITH LOCAL TIME ZONE.
The second column is used to contain a DESCRIPTION of type VARCHAR2. The trigger that performs the
logging needs to combine a sysdate and a time zone value into a string prior to converting it into a
TIMESTAMP.

First, let’s create the table that will be used to log the changes on the JOBS table:

CREATE TABLE time_log
(job_time TIMESTAMP WITH LOCAL TIME ZONE,
 description VARCHAR2(2000));

Next, a simple function is created that will return the time zone for a given city code. The function

will return time zones for Chicago, Orlando, or San Jose because these are the different cities where our
imaginary industry has offices.

CHAPTER 6 TYPE CONVERSION

128

CREATE OR REPLACE FUNCTION find_tz (city IN VARCHAR2)
RETURN NUMBER IS
 tz NUMBER := 0;
BEGIN
 IF city = 'CHI' THEN
 tz := -5;
 ELSIF city = 'ORD' THEN
 tz := -4;
 ELSIF city = 'SJ' THEN
 tz := -7;
 END IF;
 RETURN tz;
END;

The last piece of code is the trigger that performs the INSERT on the logging table. This trigger

performs a conversion of a string to a TIMESTAMP using the TO_TIMESTAMP_TZ function.

CREATE OR REPLACE TRIGGER log_job_history
AFTER INSERT ON jobs
FOR EACH ROW
DECLARE
 my_ts VARCHAR2(25) := to_char(sysdate, 'YYYY-MM-DD HH:MI:SS');
BEGIN
 my_ts := my_ts || ' ' || find_tz('CHI');

 INSERT INTO time_log values(
 TO_TIMESTAMP_TZ(my_ts, 'YYYY-MM-DD HH:MI:SS TZH:TZM'),
 'INSERT'
);

END;

In this example, the trigger is hard-coded to assume a Chicago entry, but in reality this information

would have been obtained from the user’s session. However, since that code is out of scope for this
recipe, the hard-coded city does the trick.

How It Works
Similar to other Oracle conversion functions, the TO_TIMESTAMP_TZ and TO_TIMESTAMP functions accept
two arguments. The first argument is a string value containing a date value in text form. The second
argument is a format model that is used to coerce the given string value into the TIMESTAMP or TIMESTAMP
WITH LOCAL TIME ZONE datatype. The TO_TIMESTAMP_TZ conversion will accept and convert a time zone
along with the TIMESTAMP, whereas the TO_TIMESTAMP function will not account for a time zone.

The format model is very similar to that of the TO_CHAR and TO_DATE functions. The format model will
differ depending upon the format of the date that you want to convert. In the solution to this recipe, the
format included a standard Oracle date along with a time zone. For a complete listing of all possible
format model characters, please refer to the Oracle SQL Reference manual.

 CHAPTER 6 TYPE CONVERSION

129

6-6. Writing ANSI-Compliant Conversions

Problem
You want to convert strings to dates using an ANSI-compliant methodology.

Solution
Use the CAST function, because it is ANSI-compliant. In this example, a procedure is written that will
select each of the rows within the JOB_HISTORY table that fall within a specified date range. The dates will
be converted into strings, and other information will be appended to the converted dates. This
procedure will produce a simple report to display the JOB_HISTORY.

CREATE OR REPLACE PROCEDURE job_history_rpt(in_start_date IN DATE,
 in_end_date IN DATE) AS
 CURSOR job_history_cur IS
 SELECT CAST(hist.start_date AS VARCHAR2(12)) || ' - ' ||
 CAST(hist.end_date AS VARCHAR2(12)) || ': ' ||
 emp.first_name || ' ' || emp.last_name || ' - ' ||
 job_title || ' ' || department_name as details
 FROM jobs jobs,
 job_history hist,
 employees emp,
 departments dept
 WHERE hist.start_date >= in_start_date
 AND hist.end_date <= in_end_date
 AND jobs.job_id = hist.job_id
 AND emp.employee_id = hist.employee_id
 AND dept.department_id = hist.department_id;

 job_history_rec job_history_cur%ROWTYPE;

BEGIN
 DBMS_OUTPUT.PUT_LINE('JOB HISTORY REPORT FOR ' ||
 in_start_date || ' to ' || in_end_date);
 FOR job_history_rec IN job_history_cur LOOP
 DBMS_OUTPUT.PUT_LINE(job_history_rec.details);
 END LOOP;
END;

Given the start date of September 1, 1989, the resulting output from this procedure will resemble the

following:

SQL> exec job_history_rpt(to_date('01-SEP-1989','DD-MON-YYYY'),sysdate);
JOB HISTORY REPORT FOR 01-SEP-89 to 01-SEP-10
13-JAN-93 - 24-JUL-98: Lex De Haan - Programmer IT
21-SEP-89 - 27-OCT-93: Neena Kochhar - Public Accountant Accounting
28-OCT-93 - 15-MAR-97: Neena Kochhar - Accounting Manager Accounting
17-FEB-96 - 19-DEC-99: Michael Hartstein - Marketing Representative Marketing

CHAPTER 6 TYPE CONVERSION

130

24-MAR-98 - 31-DEC-98: Jonathon Taylor - Sales Representative Sales
01-JAN-99 - 31-DEC-99: Jonathon Taylor - Sales Manager Sales
01-JUL-94 - 31-DEC-98: Jennifer Whalen - Public Accountant Executive

PL/SQL procedure successfully completed.

How It Works
The CAST function can be used to easily convert datatypes. However, there is no real benefit to using CAST
as opposed to TO_NUMBER or TO_CHAR in most cases. The format for the CAST function is as follows:

CAST(expression AS type_name)

You can use this function to convert between different datatypes. Table 6-5 lists the different to and
from datatypes that the CAST function can handle.

Table 6-5. CAST Function Converstion Table

CAST from Datatype To Datatype

CHAR, VARCHAR2 CHAR, VARCHAR2
NUMBER
DATETIME/INTERVAL
RAW
ROWID, UROWID

NUMBER CHAR, VARCHAR2
NUMBER
NCHAR, NVARCHAR2

DATETIME/INTERVAL CHAR, VARCHAR2
DATETIME/INTERVAL
NCHAR, NVARCHAR2

RAW CHAR, VARCHAR2
RAW
NCHAR, NVARCHAR2

ROWID, UROWID CHAR, VARCHAR2
ROWID, UROWID
NCHAR, NVARCHAR2

NCHAR, NVARCHAR2 NCHAR, NVARCHAR2

The CAST function offers advantages to the TO_ conversion functions in some cases. For instance, if
you are attempting to write SQL that is 100 percent ANSI-compliant, then you should use the CAST
function because the Oracle conversion functions are not compliant. However, PL/SQL itself is not
ANSI-compliant, so the CAST function offers no advantages while writing PL/SQL code.

The following are a few more examples of using the CAST function:

 CHAPTER 6 TYPE CONVERSION

131

-- Convert date to VARCHAR2
SELECT CAST('05-MAY-2010' AS VARCHAR2(15)) FROM DUAL;

-- Convert string to NUMBER
SELECT CAST('1024' AS NUMBER) FROM DUAL;

-- Convert string to ROWID
SELECT CAST('AAYyVSADsAAAAFLAAA' AS ROWID) FROM DUAL;

If you prefer to have more control over your conversions, the Oracle TO_ conversion functions are

the way to go. They allow you to provide a format mask to control the conversion formatting.

6-7. Implicitly Converting Between PLS_INTEGER and NUMBER

Problem
You want to convert a number to PLS_INTEGER datatype so that calculations can be performed.

Solution
In this case, allow Oracle to do the footwork and implicitly convert between the two datatypes. In the
following example, the function accepts a NUMBER, converts it to PLS_INTEGER, and performs a calculation
returning the result. The function converts to PLS_INTEGER in order to gain a performance boost.

CREATE OR REPLACE FUNCTION mass_energy_calc (mass IN NUMBER,
 energy IN NUMBER)
RETURN PLS_INTEGER IS
 new_mass PLS_INTEGER := mass;
 new_energy PLS_INTEGER := energy;
BEGIN
 RETURN ((new_mass * new_energy) * (new_mass * new_energy));
EXCEPTION
 WHEN OTHERS THEN
 RETURN -1;
END;

The function will accept NUMBER values, automatically convert them into PLS_INTEGER, and return a

PLS_INTEGER type.

How It Works
Implicit conversion occurs when Oracle automatically converts from one datatype to another. Oracle
will implicitly convert some datatypes but not others. As per the solution to this recipe, one of the
datatypes that supports implicit conversion is PLS_INTEGER. As a matter of fact, PLS_INTEGER cannot be
converted using the TO_NUMBER function; so in this case, implicit is the best way to convert a PLS_INTEGER
datatype to anything else. However, if there is a way to explicitly convert the datatype from one to
another, then that is the recommended approach. You cannot be certain of the results when Oracle is
automatically converting for you; explicit conversion allows you to have more control.

CHAPTER 6 TYPE CONVERSION

132

The PLS_INTEGER datatype can be advantageous over using a NUMBER in some cases. For instance, a
PLS_INTEGER has performance advantages when compared to a NUMBER for doing calculations because
they use machine arithmetic as opposed to library arithmetic. Additionally, the PLS_INTEGER datatype
requires less storage than its counterparts. In the solution to this recipe, the function takes advantage of
the faster calculation speed that is possible using PLS_INTEGER.

C H A P T E R 7

133

Numbers, Strings, and Dates

Every PL/SQL program uses one or more datatypes. This chapter focuses on some details that you
should know when working with data in the form of numbers, strings, and dates. Each recipe in this
chapter provides a basic tip for working with these datatypes. From basic string concatenation to more
advanced regular expression processing, you’ll learn some techniques for getting things done in an
effective manner. You’ll learn about date calculations as well. When you’re done with this chapter, you’ll
be ready to move on to the more advanced recipes later in the chapters to follow.

7-1. Concatenating Strings

Problem
You have two or more text strings, or variables containing strings, that you want to combine.

Solution
Use the concatenation operator to append the strings. In the following example, you can see that two
variables are concatenated to a string of text to form a single string of text:

DECLARE
 CURSOR emp_cur IS
 SELECT employee_id, first_name, last_name
 FROM EMPLOYEES
 WHERE HIRE_DATE > TO_DATE('01/01/2000','MM/DD/YYYY');

 emp_rec emp_cur%ROWTYPE;
 emp_string VARCHAR2(150);
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES HIRED AFTER 01/01/2000');
 DBMS_OUTPUT.PUT_LINE('================================');
 FOR emp_rec IN emp_cur LOOP
 emp_string := emp_rec.first_name || ' ' ||
 emp_rec.last_name || ' - ' ||
 'ID #: ' || emp_rec.employee_id;

 DBMS_OUTPUT.PUT_LINE(emp_string);
 END LOOP;
END;

CHAPTER 7 NUMBERS, STRINGS, AND DATES

134

You can see that the example uses the concatenation operator || to formulate a string of text that
contains each employee’s first name, last name, and employee ID number.

How It Works
As you have seen in the solution to this recipe, the concatenation operator is used for concatenating
strings within your PL/SQL applications. When the concatenation operator is used to concatenate
numbers with strings, the numbers are automatically converted into strings and then concatenated.
Similarly, an automatic conversion occurs with dates before being concatenated.

7-2. Adding Some Number of Days to a Date

Problem
You want to add a number of days to a given date. For example, you are developing an application that
calculates shipping dates for a company’s products. In this case, your application is processing
shipments, and you need to calculate a date that is 14 days from the current date.

Solution
Treat the number of days as an integer, and add that integer to your DATE value. The following lines of
code show how this can be done:

DECLARE
 ship_date DATE := SYSDATE + 14;
BEGIN
 DBMS_OUTPUT.PUT_LINE('The shipping date for any products '||
 'that are ordered today is ' || ship_date);
END;

The result that is displayed for this example will be 14 days past your current date.
If you wanted to encapsulate this logic within a function, then it would be easy to do. The following

function takes a date and a number as arguments. The function will perform simple mathematics and
return the result.

CREATE OR REPLACE FUNCTION calculate_days(date_to_change IN DATE,
 number_of_days IN NUMBER)
RETURN DATE IS
BEGIN
 RETURN date_to_change + number_of_days;
END;

Notice that the name of the function does not include the word add, such as ADD_DAYS. That was

done on purpose because this function not only allows addition of days to a date, but if a negative
number is passed in as an argument, then it will also subtract the number of days from the given date.

How It Works
Since calculations such as these are the most common date calculations performed, Oracle makes them
easy to do. If a number is added to or subtracted from a DATE value, Oracle Database will add or subtract

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

135

that number of days from the date value. DATE types can have numbers added to them, and they can also
have numbers subtracted from them. Multiplication and division do not work because it is not possible
to perform such a calculation on a date. For example, it doesn’t mean anything to speak of multiplying a
date by some value.

If you are developing an application that always performs an addition or subtraction using the same
number of days, it may be helpful to create a function such as the one demonstrated in the solution to
this recipe. For instance, if you were developing a billing application and always required a date that was
30 days into the future of the current date, then you could create a function named BILLING_DATE and
hard-code the 30 days into it. This is not necessary, but if your business or application depended upon it,
then it may be a good idea to encapsulate logic to alleviate possible data entry errors.

7-3. Adding a Number of Months to a Date

Problem
You want to add some number of months to a date. For example, you are developing a payment
application for a company, and it requires payments every six months. You need to enable the
application to calculate the date six months in the future of the current date.

■ Note This recipe’s solution also works for subtracting months. Simply “add” a negative number of months.

Solution
Use the ADD_MONTHS function to add six months onto the given date. Doing so will enable your
application to create bills for future payments. This technique is demonstrated in the following
example:

DECLARE
 new_date DATE;
BEGIN
 new_date := ADD_MONTHS(sysdate,6);
 DBMS_OUTPUT.PUT_LINE('The newly calculated date is: ' || new_date);
END;

This simple technique will enable you to add a number of months to any given date. As with any

other logic, this could easily be encapsulated into a function for the specific purpose of producing a
billing date that was six months into the future of the current date. Such a function may look something
like the next example:

CREATE OR REPLACE FUNCTION calc_billing_date IS
BEGIN
 RETURN ADD_MONTHS(sysdate, 6);
END;

Although this function does not do much besides encapsulate logic, it is a good idea to code such

functions when developing a larger application where this type of calculation may be performed several

CHAPTER 7 NUMBERS, STRINGS, AND DATES

136

times. It will help to maintain consistency and alleviate maintenance issues if the date calculation ever
needs to change. You could simply make the change within the function rather than visiting all the
locations in the code that use the function.

How It Works
Oracle provides the ADD_MONTHS function to assist with date calculations. This function has two
purposes—to add or subtract a specified number of months from the given date. The syntax for use of
the ADD_MONTHS function is as follows:

ADD_MONTHS(date, integer)

You can also use the function to subtract months from the given date. If the function is passed a

negative integer in place of the month’s argument, then that number of months will be subtracted from
the date. The following example demonstrates this functionality:

DECLARE
 new_date DATE;
BEGIN
 new_date := ADD_MONTHS(sysdate,-2);
 DBMS_OUTPUT.PUT_LINE('The newly calculated date is: ' || new_date);
END;

As you can see from the example in Figure 7-3, the negative integer is the only change made to the

code in order to achieve a subtraction of months rather than an addition. As a result, the example in this
figure will return the current date minus two months.

In the case that you are attempting to add months to a date that represents the last day of the
month, the ADD_MONTHS function works a bit differently than you might expect. For instance, if it is August
31 and you want to add one month, then you would expect the calculation to resolve to September 31,
which is not possible. However, ADD_MONTHS is smart enough to return the last day of September in this
case. The following code provides a demonstration:

DECLARE
 new_date DATE;
BEGIN
 new_date := ADD_MONTHS(to_date('08/31/2010','MM/DD/YYYY'),1);
 DBMS_OUTPUT.PUT_LINE('The last day of next month is: ' || new_date);
END;

The following is the resulting output:

The last day of next month is: 30-SEP-10

PL/SQL procedure successfully completed.
In general, if your source date is the late day of its month, then your result date will be forced to the

last day of its respective month. Adding one month to September 30, for example, will yield October 31.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

137

7-4. Adding Years to a Date

Problem
You are developing an application that requires date calculations to be performed. You need to
determine how to add to a specified date. You may also want to subtract years.

Solution
Create a function that will calculate a new date based upon the number of years that you have specified.
If you want to subtract a number of years from a date, then pass a negative value for the number of years.
The following code implements this functionality:

CREATE OR REPLACE FUNCTION calculate_date_years (in_date DATE,
 in_years NUMBER)
RETURN DATE AS
 new_date DATE;
BEGIN
 IF in_date is NULL OR in_years is NULL THEN
 RAISE NO_DATA_FOUND;
 END IF;
 new_date := ADD_MONTHS(in_date, 12 * in_years);
 RETURN new_date;
END;

The example function expects to receive a date and a number of years to add or subtract as

arguments. If one of those arguments is left out, then PL/SQL will raise an ORA-06553 error, and the
example also raises a special NO_DATA_FOUND error if one or both of the arguments are NULL. The return
value will be the input date but in the newly calculated year.

How It Works
Oracle provides a couple of different ways to calculate dates based upon the addition or subtraction of
years. One such technique is to use the ADD_MONTHS function that was discussed in Recipe 7-3, as the
solution to this recipe demonstrates. Simple mathematics allow you to multiply the number of years
passed into the ADD_MONTHS function by 12 since there are 12 months in the year. Essentially this
technique exploits the ADD_MONTHS function to return a date a specified number of dates into the future.

■ Note See Recipe 7-3 for discussion of a corner case involving the use of ADD_MONTHS on a date that represents

the final day of that date’s month.

You can use this same technique to subtract a number of years from the specified date by passing a
negative integer value that represents the number of years you want to subtract. For instance, if you
wanted to subtract five years from the date 06/01/2000, then pass a -5 to the function that was created in
the solution to this recipe. The following query demonstrates this strategy.

CHAPTER 7 NUMBERS, STRINGS, AND DATES

138

select calculate_date_years(to_date('06/01/2000','MM/DD/YYYY'),-5) from dual;

Here’s the result:

06/01/1995

Using the ADD_MONTHS function works well for adding or subtracting a rounded number of years.

However, if you wanted to add one year and six months, then it would take another line of code to add
the number of months to the calculated date. The function in the next example is a modified version of
the CALCULATE_DATE_YEARS function that allows you to specify a number of months to add or subtract as
well:

CREATE OR REPLACE FUNCTION calculate_date_years (in_date DATE,
 in_years IN NUMBER,
 in_months IN NUMBER DEFAULT 0)
RETURN DATE AS
 new_date DATE;
BEGIN
 IF in_date is NULL OR in_years is NULL THEN
 RAISE NO_DATA_FOUND;
 END IF;
 new_date := ADD_MONTHS(in_date, 12 * in_years);
 -- Additional code to add the number of months to the calculated date
 IF in_months != 0 THEN
 new_date := ADD_MONTHS(new_date, in_months);
 END IF;
 RETURN new_date;
END;

Using the new function, you can pass positive integer values for the number of years and the

number of months to add years or months to the date, or you can pass negative values for each to
subtract years or months from the date. You can also use a combination of positive and negative integers
for each to obtain the desired date. Since the modified function contains a DEFAULT value of 0 for the
number of months, it is possible to not specify a number of months, and you will achieve the same result
as the function in the solution to the recipe.

As you can see, this function is a bit easier to follow, but it does not allow for one to enter a negative
value to subtract from the date. All the techniques described within this section have their own merit.
However, it is always a good rule of thumb to write software so that it is easy to maintain in the future.
Using this rule of thumb, the most favored technique of the three would be to use the ADD_MONTHS
function as demonstrated in the solution. Not only is this function easy to understand but also widely
used by others within the Oracle community.

7-5. Determining the Interval Between Two Dates

Problem
You want to determine the number of days between two dates. For example, working on an application
to calculate credit card late fees, you are required to determine the number of days between any two
given dates. The difference in days between the two dates will produce the number of days that the
payment is overdue.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

139

Solution
Subtract the two dates using simple math to find the interval in days. In this solution, the example code
subtracts the current date from the due date to obtain the number of days that the payment is past due:

CREATE OR REPLACE FUNCTION find_interval(from_date IN DATE,
 to_date IN DATE)
RETURN NUMBER AS
BEGIN
 RETURN abs(trunc(to_date) – trunc(from_date));
END;

This function will return the difference between the two dates passed as arguments. Note that the

number of days will be a decimal value. Although it is just as easy to subtract one date from another
without the use of a helper function, sometimes it is useful to encapsulate the logic. This is especially
true if the same calculation will be performed multiple times throughout the application.

How It Works
Oracle includes the ability to subtract dates in order to find the difference between the two. You can use
this functionality within PL/SQL code or SQL queries. The result of the calculation is the number of
fractional days between the two dates. That number can be rounded in order to find the number of days,
or it can be formatted to determine the number of days, hours, minutes, and seconds.

As it stands, the result from the subtraction of two will return the number of days between the given
dates. If you were interested in returning the number of hours, minutes, or seconds between the two
dates, then you could do so by applying some simple mathematics to the result of the subtraction. For
instance, to find an interval in minutes, multiply the result by 24 * 60. The following functions show how
this technique can be used to create separate functions for returning each time interval:

CREATE OR REPLACE FUNCTION find_interval_hours(from_date IN DATE,
 to_date IN DATE)
RETURN NUMBER AS
BEGIN
 RETURN abs(trunc(from_date) - trunc(to_date))* 24;
END;

CREATE OR REPLACE FUNCTION find_interval_minutes(from_date IN DATE,
 to_date IN DATE)
RETURN NUMBER AS
BEGIN
 RETURN (from_date - to_date) * 24 * 60;
END;

CREATE OR REPLACE FUNCTION find_interval_seconds(from_date IN DATE,
 to_date IN DATE)
RETURN NUMBER AS
BEGIN
 RETURN (from_date - to_date) * 24 * 60 * 60;
END;

CHAPTER 7 NUMBERS, STRINGS, AND DATES

140

Each of these functions will return a decimal number that can be rounded. Now you can mix and
match these functions as needed to return the desired time interval between two dates.

7-6. Adding Hours, Minutes, Seconds, or Days to a Given Date

Problem
One of your applications requires that you have the ability to add any number of days, hours, minutes, or
seconds to a given date and time to produce a new date and time.

Solution
Create functions that add each of these time values to TIMESTAMP dataypes that are passed as an
argument. Each of these functions will return the given time plus the amount of time that is passed in as
argument. The following three functions will provide the ability to add hours, minutes, seconds, or days
to a given time. Each of these functions returns the calculated date and time using the TIMESTAMP
datatype.

CREATE OR REPLACE FUNCTION calc_hours(time_to_change IN TIMESTAMP,
 timeval IN NUMBER)
RETURN TIMESTAMP AS
 new_time TIMESTAMP;
BEGIN

 new_time := time_to_change + NUMTODSINTERVAL(timeval,'HOUR');

 RETURN new_time;
END;

CREATE OR REPLACE FUNCTION calc_minutes(time_to_change IN TIMESTAMP,
 timeval IN NUMBER)
RETURN TIMESTAMP AS
 new_time TIMESTAMP;
BEGIN

 new_time := time_to_change + NUMTODSINTERVAL(timeval,'MINUTE');

 RETURN new_time;
END;

CREATE OR REPLACE FUNCTION calc_seconds(time_to_change IN TIMESTAMP,
 timeval IN NUMBER)
RETURN TIMESTAMP AS
 new_time TIMESTAMP;
BEGIN

 new_time := time_to_change + NUMTODSINTERVAL(timeval,'SECOND');

 RETURN new_time;
END;

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

141

CREATE OR REPLACE FUNCTION calc_days(time_to_change IN TIMESTAMP,
 timeval IN NUMBER)
RETURN TIMESTAMP as
 new_time TIMESTAMP;
BEGIN
 new_time := time_to_change + timeval;
 RETURN new_time;
END;

All of these functions operate in a similar fashion. You must input a date in the form of a TIMESTAMP,

and the calculated TIMESTAMP will be returned.

How It Works
When performing the calculation of times and dates in Oracle, you have plenty of options. Over the
years, Oracle Database has introduced newer functions to help alleviate some of the difficulties that
were encountered when attempting date and time calculations in earlier versions of the database. Date
and time calculations can be as simple as adding an integer to the DATE or TIMESTAMP. They can also be
difficult when many multiplications and divisions occur within the same calculation. The solution to this
recipe provides you with an easy way to add time to a given date using the NUMTODSINTERVAL function.
The syntax for this function is as follows:

NUMTODSINTERVAL(number, expression)

The expression that is passed to the function must be one of the following: HOUR, MINUTE, SECOND, or

DAY. Technically, the functions created in the solution are capable of subtracting the time or day values
from the given date as well. If you were to pass a negative number to the functions, then the
NUMTODSINTERVAL would subtract that many units from the given date and time and return the result. The
functions in the solution also do not lock you into using a TIMESTAMP; if you were to pass a DATE type in as
an argument, then it would work just as well.

In the past, you used to only have the ability to use fractions to add or subtract hours, minutes, and
seconds to a date. Over the next few examples, I will show you the sort of fractional mathematics that
you may see in legacy code. You can add a fraction to a date or TIMESTAMP as both will return a result. To
add hours to a date, use the fraction x/24, where x is the number of hours (1–24) you want to add. You
can subtract hours by using a negative value for x. This works because there are of course 24 hours in
one day. The following example shows how you may see some legacy code using fractions to add hours.

-- Add 1 hour to the current date
result := SYSDATE + 1/24;

-- Add 5 hours to the current date
result := CURRENT_TIMESTAMP + 5/24;

It is possible to add minutes to a date using a similar technique with fractions. To add minutes, use

the fraction x/24/60, where x is the number of minutes (1–60) that you would like to add. Again, use a
negative value in place of x in order to subtract that number of minutes from a date. This fraction works
because it divides the number assigned to x by the hours in the day and then divides that result by the
number of minutes in an hour. The next figure shows an example of this technique.

-- Add 10 mintes to the current date
result := SYSDATE + 10/24/60;

CHAPTER 7 NUMBERS, STRINGS, AND DATES

142

-- Add 30 minutes to the current date
result := CURRENT_TIMESTAMP + 30/24/60;

Similarly, you can add seconds to a date by using the fraction x/24/3600. In this fraction, x is the

number of seconds (1–60) that you want to add. Subtraction of seconds is possible by using a negative
number for the x value. Just as with the other fractional calculations, this works because there are 3,600
seconds in one hour. Therefore, the number assigned to x is divided by the number of hours in the day,
and then that result is divided by the number of seconds in one hour. The next figure demonstrates
adding seconds to the date using this technique:

-- Add 10 seconds to the current date
result := SYSDATE + 10/24/3600;

-- Add 45 seconds to the current date
result := CURRENT_TIMESTAMP + 45/24/3600;

Using the fractional mathematics, you can add each of the different fractions to the given date and

achieve the same result. It is not uncommon for legacy code using fractional mathematics for date
calculation to look like the following:

-- Add 2 hours, 5 minutes, and 30 seconds to the current date
result := SYSDATE + 2/24 + 5/24/60 + 30/24/3600;

There are a number of ways to add time intervals to a given date. I recommend using

NUMTODSINTERVAL for performing mathematics on time values. In the past, this function was not available,
so using fractional mathematics was the only way to add or subtract time from a given date. As shown in
the solution to this recipe, it is possible to encapsulate the logic inside of a PL/SQL function. If this is
done, then you could change the implementation inside the function and someone using it would never
know the difference. Date and time calculations can be made even easier to use by writing functions to
encapsulate the logic.

7-7. Returning the First Day of a Given Month

Problem
You want to have the ability to obtain the name of the first day for a given month.

Solution
Write a PL/SQL function that accepts a date and applies the necessary functions to return the first day of
month for the given date.

CREATE OR REPLACE FUNCTION first_day_of_month(in_date DATE)
RETURN VARCHAR2 IS
BEGIN
 RETURN to_char(trunc(in_date,'MM'), 'DD-MON-YYYY');
END;

The function created in this solution will return the first day of the month that is passed into it

because it is passed into the TRUNC function.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

143

How It Works
The TRUNC function can be useful for returning information from a DATE type. In this case, it is used to
return the first day of the month from the given date. The solution then converts the truncated date
value to a character format and returns the result.

The TRUNC function accepts two arguments, the first being the date that is to be truncated and the
second being the format model. The format model is a series of characters that specifies how you want
to truncate the given date. Table 7-1 lists the format models along with a description of each.

Table 7-1. Format Models for TRUNC

Format Model Description

MI Returns the nearest minute

HH, HH12, HH24 Returns the nearest hour

D, DY, DAY Returns the first day of the week

W Returns the same day of the week as the first day of the month

IW Returns the same day of the week as the first day of ISO year

WW Returns the same day of the week as the first day of the year

RM, MM, MON, MONTH Rounds to the nearest first day of the month

Q Rounds to the nearest quarter

I, IY, IYYY Returns the ISO year

Y, YY, YYY, SYEAR, YEAR, YYYY Rounds to the nearest first day of the year

CC, SCC Returns one greater than the first two digits of a given four-digit year

The solution to this recipe returns the first day of the given month using the format model MM.

7-8. Returning the Last Day of a Given Month

Problem
You want to have the ability to obtain the last day for a given month.

CHAPTER 7 NUMBERS, STRINGS, AND DATES

144

Solution
Use the Oracle built-in LAST_DAY function to return the last day of the month for the date that you pass
into it. The following example demonstrates a code block in which the LAST_DAY function is used to
return the last day of the current month:

DECLARE
 last_day VARCHAR2(20);
BEGIN
 select LAST_DAY(sysdate)
 INTO last_day
 FROM DUAL;
 DBMS_OUTPUT.PUT_LINE(last_day);
END;

How It Works
The LAST_DAY function is an easy way to retrieve the date for the last day of a given date. To use the
function, pass in any date, and the last day of the month for the given date will be returned. The function
can be useful in combination with other functions, especially for converting strings into dates and then
determining the last day of the given month for the date given in string format. For example, the
following combination is used quite often:

LAST_DAY(to_date(string_based_date,'MM/DD/YYYY'))

7-9. Rounding a Number

Problem
You are interested in rounding a given number. For example, let’s say you are working on employee
timecards, and you want to round to the nearest tenth of an hour for every given hour amount.

Solution
Use the Oracle built-in ROUND function to return the result that you desire. For this solution, you are
working with hours on employee timecards. To round to the nearest tenth, you would write a small
PL/SQL function that uses the ROUND function and returns the result. The following example
demonstrates this technique:

CREATE OR REPLACE FUNCTION emp_labor_hours(time IN NUMBER)
RETURN NUMBER IS
BEGIN
 RETURN ROUND(time, 1);
END;

The time will be rounded to the nearest tenth in this example because a 1 is passed as the second

argument to the ROUND function.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

145

How It Works
The Oracle built-in ROUND function can be used for rounding numbers based upon a specified precision
level. To use the ROUND function, pass a number that you would like to round as the first argument, and
pass the optional precision level as the second argument. If you do not specify a precision level, then the
number will be rounded to the nearest integer. If the precision is specified, then the number will be
rounded to the number of decimal places specified by the precision argument.

In the case of this solution, a 1 was specified for the precision argument, so the number will be
rounded to one decimal place. The precision can be up to eight decimal places. If you specify a precision
larger than eight decimal places, then the precision will default to eight.

7-10. Rounding a Datetime Value

Problem
Given a particular date and time, you want the ability to round the date.

Solution
Use the ROUND function passing the date you want to round along with the format model for the unit you
want to round. For example, suppose that given a date and time, you want to the nearest day. To do this,
you would pass in the date along with the DD format model. The following code block demonstrates this
technique:

BEGIN
 DBMS_OUTPUT.PUT_LINE(to_char(ROUND (SYSDATE, 'DD'),'MM/DD/YYYY - HH12:MI:SS'));
 END;

The previous code block will return the current date and time rounded to the nearest day. For

example, if it is before 12 p.m., then it will round the given date back to 12 a.m. on that date; otherwise, it
will round forward to 12 a.m. on the next date.

How It Works
You can also use the ROUND function for working with DATE types. To round a date using this function, you
must specify the date you want to have rounded as the first argument along with the format parameter
for the type of rounding you want to perform. Table 7-2 lists the different format parameters for
performing DATE rounding.

CHAPTER 7 NUMBERS, STRINGS, AND DATES

146

Table 7-2. Format Parameters for DATE Rounding

Format Parameter Description

Y, YYY, YYYY, YEAR, SYEAR, SYYYY Rounds to the nearest year

I, IY, IYYY Rounds to the nearest ISO year

Q Rounds to the nearest quarter

RM, MM, MON, MONTH Rounds to the nearest month

WW Rounds to the same day of the week as the first day of the year

IW Rounds to the same day of the week as the first day of the ISO year

W Rounds to the same day of the week as the first day of the month

J, DD, DDD Rounds to the nearest day

D, DY, DAY Rounds to the start day of the week

HH, HH12, HH24 Rounds to the nearest hour

MI Rounds to the nearest minute

If you find that you are using the same date conversion in many places throughout your application,

then it may make sense to create a function to encapsulate the call to the ROUND function. Doing so would
enable a simple function call that can be used to return the date value you require rather than
remembering to use the correct format parameter each time.

7-11. Tracking Time to a Millisecond

Problem
You are interested in tracking time in a finely grained manner to the millisecond. For example, you want
to determine the exact time in which a particular change is made to the database.

Solution
Perform simple mathematics with the current date time in order to determine the exact time down the
millisecond. The following function accepts a timestamp and returns the |milliseconds:

CREATE OR REPLACE FUNCTION capture_milliseconds(in_time TIMESTAMP)
RETURN NUMBER IS
 milliseconds NUMBER;

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

147

BEGIN
select sum(
 (extract(hour from in_time))*3600+
 (extract(minute from in_time))*60+
 (extract(second from in_time)))*1000
into MILLISECONDS from dual;
RETURN milliseconds;

END;

How It Works
If your application requires a fine-grained accuracy for time, then you may want to track time in
milliseconds. Performing a calculation such as the one demonstrated in the solution to this recipe on a
given DATE or TIMESTAMP can do this. By combining the EXTRACT function with some calculations, the
desired milliseconds result can be achieved.

The EXTRACT function is used to extract YEAR, MONTH, or DATE units from a DATE type. It can extract
HOUR, MINUTE, or SECOND from a TIMESTAMP. Milliseconds can be calculated by obtaining the sum of the
hours multiplied by 3600, the minutes multiplied by 60, and the seconds multiplied by 1000 from a given
TIMESTAMP. If you need to use milliseconds in your program, then I recommend creating a function such
as the one demonstrated in the solution to this recipe to encapsulate this logic.

7-12. Associating a Time Zone with a Date and Time

Problem
You want to associate a time zone with a given date and time in order to be more precise.

Solution
Create a code block that declares a field as type TIMESTAMP WITH TIME ZONE. Assign a TIMESTAMP to the
newly declared field within the body of the code block. After doing so, the field that you declared will
contain the date and time of the TIMESTAMP that you assigned along with the associated time zone. The
following example demonstrates a code block that performs this technique using the SYSTIMESTAMP:

DECLARE
 time TIMESTAMP WITH TIME ZONE;
 BEGIN
 time := SYSTIMESTAMP;
 DBMS_OUTPUT.PUT_LINE(time);
 END;

The results that will be displayed via the call to DBMS_OUTPUT should resemble something similar to

the following:

29-AUG-10 10.27.58.639000 AM -05:00

PL/SQL procedure successfully completed.

CHAPTER 7 NUMBERS, STRINGS, AND DATES

148

How It Works
Prior to the TIMESTAMP datatype being introduced in Oracle 9i, the DATE type was the only way to work
with dates. There were limited capabilities provided, and later the TIMESTAMP was created to fill those
gaps. For those needing to make use of time zones, Oracle created the TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE datatypes. Both of these datatypes provide a time zone to be
associated with a given date, but they work a bit differently. When you specify the WITH TIME ZONE
option, the time zone information is stored within the database along with the hours, minutes, and so
on. However, if you specify the WITH LOCAL TIME ZONE option, the time zone information is not stored
within the database, but rather it is calculated each time against a baseline time zone, which determines
the time zone of your current session.

In the solution to this recipe, the time zone information is stored within the database along with the
rest of the date and time associated with the TIMESTAMP.

7-13. Finding a Pattern Within a String

Problem
You want to find the number of occurrences of a particular pattern within a given string. For instance,
you want to search for email addresses within a body of text.

Solution
Use a regular expression to match a given string against the body of text and return the resulting count of
matching occurrences. The following example searches through a given body of text and counts the
number of email addresses it encounters. Any email address will be added to the tally because a regular
expression is used to compare the strings.

CREATE OR REPLACE PROCEDURE COUNT_EMAIL_IN_TEXT(text_var IN VARCHAR2) AS
 counter NUMBER := 0;
 mail_pattern VARCHAR2(15) := '\w+@\w+(\.\w+)+';
BEGIN
 counter := REGEXP_COUNT(text_var, mail_pattern);

 IF COUNTER = 1 THEN
 DBMS_OUTPUT.PUT_LINE('This passage provided contains 1 email address’);
 ELSIF counter > 1 THEN
 DBMS_OUTPUT.PUT_LINE('This passage provided contains '||
 counter || ' email addresses');
 ELSE
 DBMS_OUTPUT.PUT_LINE('This passage provided contains ' ||
 'no email addresses');
 END IF;
END;

The function in this example provides a single service because it counts the number of occurrences

of an email address in a given body of text and returns the result.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

149

How It Works
You can use regular expressions to help match strings of numbers, text, or alphanumeric values. They
are sequences of characters and symbols that assimilate a pattern that can be used to match against
strings of text. A regular expression is similar to using the % symbol as a wildcard within a query, except
that a regular expression provides a pattern that text must match against. Please refer to online Oracle
documentation for a listing of the different options that can be used for creating regular expression
patterns.

Oracle introduced the REGEXP_COUNT function in Oracle 11g, which provides the functionality of counting
the number of occurrences of a given string within a given body of text. The syntax for the REGEXP_COUNT
function is as follows:

REGEXP_COUNT(source_text, pattern, position, options)

The source text for the function can be any string literal, variable, or column that has a datatype of

VARCHAR2, NVARCHAR2, CHAR, NCHAR, CLOB, or NCLOB. The pattern is a regular expression or a string of text that
will be used to match against. The position specifies the placement within the source text where the
search should begin. By default, the position is 1. The options include different useful matching
modifiers; please refer to the Oracle regular expression support documentation at
http://download.oracle.com/docs/cd/E14072_01/server.112/e10592/ap_posix.htm#g693775 for a listing
of the pattern matching modifiers that can be used as options.

The REGEXP_COUNT function can be used within any Oracle SQL statement or PL/SQL program. The
following are a few more examples of using this function:

-- Count all occurrences of the letter 'l' in the word Hello
result := REGEXP_COUNT('hello','l');

Returns: 2

-- Count the number of occurrences of the pattern 'ells' beginning at
-- the fifth character.
result := REGEXP_COUNT('she sells sea shells by the sea shore',
 'ells',7,'c');

Returns: 1

-- Count the number of words in the line
result := REGEXP_COUNT('she sells sea shells by the sea shore',
 '\w+');

Returns: 8

As you can see from these examples, the REGEXP_COUNT function is a great addition to the Oracle

regular expression function family

http://download.oracle.com/docs/cd/E14072_01/server.112/e10592/ap_posix.htm#g693775

CHAPTER 7 NUMBERS, STRINGS, AND DATES

150

7-14. Determining the Position of a Pattern Within a String

Problem
You want to return the position of a matching string within a body of text. Furthermore, you are want to
pattern match and therefore must invoke a regular expression function. For example, you need to find a
way to determine the position of a string that matches the pattern of a phone number.

Solution
Use the REGEXP_INSTR function to use a regular expression to search a body of text to find the position of
a phone number. The following code block demonstrates this technique by looping through each of the
rows in the EMPLOYEES table and determining whether the employee phone number is USA or
international:

DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM employees;

 emp_rec emp_cur%ROWTYPE;

 position NUMBER := 0;
 counter NUMBER := 0;
 intl_count NUMBER := 0;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 position := REGEXP_INSTR(emp_rec.phone_number,
 '([[:digit:]]{3})\.([[:digit:]]{3})\.([[:digit:]]{4})');

 IF position > 0 THEN
 counter := counter + 1;
 ELSE
 intl_count := intl_count + 1;
 END IF;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Numbers within USA: ' || counter);
 DBMS_OUTPUT.PUT_LINE('International Numbers: ' || intl_count);

END;

Result:

Numbers within USA: 72
International Numbers: 35

PL/SQL procedure successfully completed.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

151

How It Works
In the solution to this recipe, the function uses REGEXP_INSTR to find all telephone numbers that match
the U.S. telephone number format. The field passed into REGEXP_INSTR is always going to return a
telephone number, but that number may be in an international format or a U.S. format. If the pattern of
the telephone number matches that of a U.S. format, then the counter for U.S. numbers is increased by
one. Otherwise, the counter for the international numbers is increased by one. The reasonable
assumption is that if a number is not a U.S. number, that it is an “international” number. Using
REGEXP_INSTR makes this a very easy function to implement.

REGEXP_INSTR will return the position of the first or last character of the matching string depending
upon the value of the return option argument. This function provides the same functionality of INSTR
except that it also allows the ability to use regular expression patterns. The syntax for this function is as
follows:

REGEXP_INSTR(source_text, pattern, position, occurrence,
 return_option, match parameter, subexpression)

All but the source_text and pattern parameters are optional. The source_text is the string of text to

be searched. The pattern is a regular expression or string that will be matched against the source_text.
The optional position argument is an integer that specifies on which character Oracle should start the
search. The optional occurrence parameter specifies which occurrence of the pattern will have its
position returned. The default occurrence argument is 1, which means that the position of the first
matching string will be returned

The optional return_option is used to specify special options that are outlined within the Oracle
regular expression documentation that can be found at
http://download.oracle.com/docs/cd/E11882_01/server.112/e10592/ap_posix.htm#g693775. The
optional match_parameter allows you to change the default matching behavior. The subexpression
parameter is optional, and it is an integer from 0 to 9 that indicates which subexpression in the
source_text will be the target of the function.

7-15. Finding and Replacing Text Within a String

Problem
You want to replace each occurrence of a given string within a body of text.

Solution
Use the REGEXP_REPLACE function to match a pattern of text against a given body of text, and replace all
matching occurrences with a new string. In the following function, the REGEXP_REPLACE function is used
to replace all occurrences of the JOB_TITLE ‘Programmer’ with the new title of ‘Developer.’

DECLARE
 CURSOR job_cur IS
 SELECT *
 FROM jobs;

 job_rec job_cur%ROWTYPE;
 new_job_title jobs.job_title%TYPE;
BEGIN

http://download.oracle.com/docs/cd/E11882_01/server.112/e10592/ap_posix.htm#g693775

CHAPTER 7 NUMBERS, STRINGS, AND DATES

152

 FOR job_rec IN job_cur LOOP
 IF REGEXP_INSTR(job_rec.job_title,'Programmer') > 0 THEN
 new_job_title := REGEXP_REPLACE(job_rec.job_title, 'Programmer',
 'Developer');

 UPDATE jobs
 SET job_title = new_job_title
 WHERE job_id = job_rec.job_id;

 DBMS_OUTPUT.PUT_LINE(job_rec.job_title || ' replaced with ' ||
 new_job_title);
 END IF;
 END LOOP;

END;

Although this particular example does not use any regular expression patterns, it could be adjusted

to do so. To find more information and tables specifying the options that are available for creating
patterns, please refer to the online Oracle documentation.

The solution to this recipe prints out the revised text. Each occurrence of the ‘Programmer’ text is
replaced with ‘Developer’, and the newly generated string is returned into the NEW_REVIEW variable.

How It Works
The REGEXP_REPLACE function is a great way to find and replace strings within a body of text. The function
can be used within any Oracle SQL statement or PL/SQL code. The syntax for the function is as follows:

REGEXP_REPLACE(source_text, pattern, replacement_string, position, occurrence, options)

The source text for the function can be any string literal, variable, or column that has a datatype of

VARCHAR2, NVARCHAR2, CHAR, NCHAR, CLOB, or NCLOB. The pattern is a regular expression or a string of text that
will be used to match against. The replacement string is will replace each occurrence of the string
identified by the source text. The optional position specifies the placement within the source text where
the search should begin. By default, the position is 1. The optional occurrence argument is a
nonnegative integer that indicates the occurrence of the replace operation. If a 0 is specified, then all
matching occurrences will be replaced. If a positive integer is specified, then Oracle will replace the
match for that occurrence with the replacement string. The optional options argument includes
different useful matching modifiers; please refer to the online Oracle documentation for a listing of the
pattern matching modifiers that can be used as options.

■ Note Do not use REGEXP_REPLACE if the replacement can be performed with a regular UPDATE statement. Since

REGEXP_REPLACE uses regular expressions, it can be slower than a regular UPDATE.

The following examples demonstrate how this function can be used within a PL/SQL application or
a simple query. This next bit of code demonstrates how to replace numbers that match those within the
given set.

 CHAPTER 7 NUMBERS, STRINGS, AND DATES

153

select REGEXP_REPLACE('abcdefghi','[acegi]','x') from dual;

Returns: xbxdxfxhx

Next, we replace a Social Security Number with Xs.

new_ssn := REGEXP_REPLACE('123-45-6789','[[:digit:]]{3}-[[:digit:]]{2}-[[:digit:]]{4}','xxx-
xxx-xxxx');

Returns: xxx-xxx-xxxx

The REGEXP_REPLACE function can be most useful when attempting to replace patterns of strings within a
given body of text such as the two previous examples have shown. As noted previously, if a standard
UPDATE statement can be used to replace a value, then that should be the first choice, because regular
expressions perform slightly slower.

C H A P T E R 8

155

Dynamic SQL

Oracle provides dynamic SQL as a means for generating DML or DDL at runtime. It can be useful when
the full text of a SQL statement or query is not known until application runtime. Dynamic SQL can help
overcome some of the limitations of static SQL, such as generating a full SQL query based upon some
user-provided information or inserting into a specific table depending upon a user action within your
application. Simply put, the ability to use dynamic SQL within PL/SQL applications provides a level of
flexibility that is not attainable with the use of static SQL alone.

Oracle allows dynamic SQL to be generated in two different ways: native dynamic SQL and through
the use of the DBMS_SQL package. Each strategy has its own benefits as well as drawbacks. In comparison,
native dynamic SQL is easier to use, it supports user-defined types, and it performs better than DBMS_SQL.
On the other hand, DBMS_SQL supports some features that are not currently supported in native dynamic
SQL such as the use of the SQL*Plus DESCRIBE command and the reuse of SQL statements. Each of these
methodologies will be compared under various use cases within this chapter. By the end of the chapter,
you should know what advantages each approach has to offer and which should be used in certain
circumstances.

8-1. Executing a Single Row Query That Is Unknown at Compile Time

Problem
You need to query the database for a single row of data matched by the primary key value. However, you
are unsure of what columns will need to be returned at runtime.

Solution #1
Use a native dynamic query to retrieve the columns of data that are determined by your application at
runtime. After you determine what columns need to be returned, create a string that contains the SQL
that is needed to query the database. The following example demonstrates the concept of creating a
dynamic SQL query and then using native dynamic SQL to retrieve the single row that is returned.

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

CHAPTER 8 DYNAMIC SQL

156

BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)
 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :id';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE SPECIFIED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;
END;

At runtime, the procedure creates a SQL query based upon the criteria that are passed into the

procedure by the invoking program. That query is then executed using the EXECUTE IMMEDIATE statement
along with the argument that will be substituted into the query WHERE clause.

Solution #2
Use the DBMS_SQL package to create a query based upon criteria that are specified at runtime. The
example in this solution will query the employee table and retrieve data based upon the parameter that
has been passed into the procedure. The procedure will accept either a primary key ID or an employee e-
mail address. The SQL statement that will be used to query the database will be determined at runtime
based upon what type of argument is used.

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE := NULL;
 emp_last employees.last_name%TYPE := NULL;
 email employees.email%TYPE := NULL;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;

 CHAPTER 8 DYNAMIC SQL

157

 temp_emp_info VARCHAR2(50);

 cursor_name INTEGER;
 row_ct INTEGER;

BEGIN

 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)
 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :emp_info';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 cursor_name := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cursor_name, emp_qry, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(cursor_name, ':emp_info', temp_emp_info);
 DBMS_SQL.DEFINE_COLUMN(cursor_name, 1, emp_first, 20);
 DBMS_SQL.DEFINE_COLUMN(cursor_name, 2, emp_last, 25);
 DBMS_SQL.DEFINE_COLUMN(cursor_name, 3, email, 25);
 row_ct := DBMS_SQL.EXECUTE(cursor_name);
 IF DBMS_SQL.FETCH_ROWS(cursor_name) > 0 THEN
 DBMS_SQL.COLUMN_VALUE (cursor_name, 1, emp_first);
 DBMS_SQL.COLUMN_VALUE (cursor_name, 2, emp_last);
 DBMS_SQL.COLUMN_VALUE (cursor_name, 3, email);
 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);

 END IF;

 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE SPECIFIED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE SPECIFIED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');

END;

CHAPTER 8 DYNAMIC SQL

158

How It Works #1
Native dynamic SQL allows you to form a string of SQL text and then execute it via the EXECUTE
IMMEDIATE statement. This is very useful when the columns, table names, or WHERE clause text is not
known at runtime. The program can build the SQL string as it needs to, and then the EXECUTE IMMEDIATE
statement will execute it. The format for the EXECUTE IMMEDIATE statement is as follows:

EXECUTE IMMEDIATE sql_string
[INTO variable_name1[, variable_name2, . . .]
USING variable_name1[, variable_name2, . . .]];

The EXECUTE IMMEDIATE statement requires only one parameter, which is a SQL string to execute.

The remainder of the statement is optional. The INTO clause lists all the variables that a SQL query would
return values into. The variables should be listed in the same order within the SQL string as they are
listed within the INTO clause. The USING clause lists all the variables that will be bound to the SQL string
at runtime. Bind variables are arguably one of the most valuable features of the PL/SQL language. Each
variable listed in the USING clause is bound to a bind variable within the SQL string. The order in which
the variables are listed in the USING clause is the same order in which they will be bound within the
string. Take a look at the following example that uses two bind variables:

EXECUTE IMMEDIATE 'select email from employees ' ||
 'where last_name =:last ' ||
 'and first_name = :first'
INTO v_email
USING v_last, v_first;

In the example query, the variables contained within the USING clause are bound in order to the bind

variables within the SQL string. Bind variables are the cornerstone to developing robust, secure, and
well-performing software.

How It Works #2
The DBMS_SQL package can also be used to perform the same task. Each of the different techniques, native
dynamic SQL and DBMS_SQL, have their advantages and disadvantages. The major difference between the
use of DBMS_SQL and native dynamic SQL is how the dynamic SQL string is executed. In this example,
DBMS_SQL package functions are used to process the SQL rather than EXECUTE IMMEDIATE. As you can see,
the code is quite a bit lengthier than using EXECUTE IMMEDIATE, and it essentially returns the same
information. In this case, DBMS_SQL is certainly not the best choice. DBMS_SQL can become useful in
situations where you do not know the SELECT list until runtime or when you are unsure of which
variables must be bound to a SELECT or DML statement. On the other hand, you must use native
dynamic SQL if you intend to use the cursor variable attributes %FOUND, %NOTFOUND, %ISOPEN, or %ROWCOUNT
when working with your cursor.

■ Note Native dynamic SQL was introduced in Oracle 9i, because DBMS_SQL was overly complex for many of the

routine tasks that programmers perform. We consider use of native dynamic SQL as the technique of choice for

working with dynamic SQL. Use DBMS_SQL only when you have a specific need to do so.

 CHAPTER 8 DYNAMIC SQL

159

8-2. Executing a Multiple Row Query That Is Unknown at Compile

Time

Problem
Your application requires a database table to be queried, but the filters for the WHERE clause are not
known until runtime. You have no idea how many rows will be returned by the query.

Solution #1
Create a native dynamic query using a SQL string that will be built at application runtime. Declare the
query using REF CURSOR, execute it by issuing an OPEN statement, and loop through the records using a
standard loop, fetching the fields within each iteration of the loop. This technique is illustrated via the
code in the following example:

DECLARE
 emp_qry VARCHAR2(500);
 TYPE cur_type IS REF CURSOR;
 cur cur_type;
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 dept_id employees.department_id%TYPE := &department_id;

BEGIN
 -- DEPARTMENT_ID WILL NOT UNIQUELY DEFINE ANY ONE EMPLOYEE

 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ' ||
 ' WHERE DEPARTMENT_ID = :id';

 OPEN cur FOR emp_qry USING dept_id;
 LOOP
 FETCH cur INTO emp_first, emp_last, email;
 EXIT WHEN cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 END LOOP;
 CLOSE cur;
END;

This example accepts a DEPARTMENT_ID as input, and it uses a bind variable to substitute the value

within the SQL string. Although the actual SQL string in this example does not require the use of a
dynamic query, it is a useful example to demonstrate the technique.

Solution #2
This same procedure can also be performed using the DBMS_SQL package. Although the native dynamic
SQL solution is easier to understand and implement, the DBMS_SQL alternative offers some different
options that are not available when using the native method. The following example is a sample of a

CHAPTER 8 DYNAMIC SQL

160

procedure that performs the same functionality as Solution #1 of this recipe. However, the procedure in
the following example uses the DBMS_SQL package to parse and execute the dynamic query rather than
native dynamic SQL.

CREATE OR REPLACE PROCEDURE obtain_emp_detail(dept_id IN NUMBER) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE := NULL;
 emp_last employees.last_name%TYPE := NULL;
 email employees.email%TYPE := NULL;

 cursor_name INTEGER;
 row_ct INTEGER;

BEGIN

 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ' ||
 ' WHERE DEPARTMENT_ID = :id';

 cursor_name := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cursor_name, emp_qry, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(cursor_name, ':id', dept_id);
 DBMS_SQL.DEFINE_COLUMN(cursor_name, 1, emp_first, 20);
 DBMS_SQL.DEFINE_COLUMN(cursor_name, 2, emp_last, 25);
 DBMS_SQL.DEFINE_COLUMN(cursor_name, 3, email, 25);
 row_ct := DBMS_SQL.EXECUTE(cursor_name);
 LOOP
 IF DBMS_SQL.FETCH_ROWS(cursor_name) > 0 THEN
 DBMS_SQL.COLUMN_VALUE (cursor_name, 1, emp_first);
 DBMS_SQL.COLUMN_VALUE (cursor_name, 2, emp_last);
 DBMS_SQL.COLUMN_VALUE (cursor_name, 3, email);
 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 EXIT;
 END IF;
 END LOOP;

DBMS_SQL.CLOSE_CURSOR(cursor_name);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
END;

How It Works
The use of native dynamic SQL in this solution is more or less equivalent to that which was performed in
the previous recipe. The largest difference lies in the use of the REF CURSOR as opposed to the EXECUTE
IMMEDIATE statement. The REF CURSOR is used to create a cursor using a dynamic SQL string.

Cursor variables can be either weakly typed or strongly typed. The cursor variable demonstrated in
the solution to this example of a weakly typed REF CURSOR, since the SQL string is not known until

 CHAPTER 8 DYNAMIC SQL

161

runtime. A strongly typed cursor variable must be known at runtime. In this sense, a strongly typed
cursor variable is very similar to a regular cursor.

The REF CURSOR type must be declared first, and then the actual cursor variable that will be used in
your code should be declared using the REF CURSOR as its type. Next you have the OPEN statement. To tell
Oracle what SQL to use for the cursor, the OPEN statement should include a FOR clause indicating the SQL
string that the cursor should use. If there are any variables to bind into the query, the optional USING
clause should follow at the end of the OPEN statement.

The subsequent cursor loop should work with the REF CURSOR in the same manner that you would
use with regular cursor variables. Always FETCH the current record or its contents into a local record or
separate local variables. Next, perform the tasks that need to be completed. Lastly, ensure that you
include an EXIT statement to indicate that the loop should be terminated after the last record has been
processed. The final step in the process is to close the cursor. After the cursor has been closed, it can be
assigned a new SQL string since you are working with weakly typed REF CURSORs.

As you can see, the example of using DBMS_SQL in Solution #2 of this recipe as opposed to the
example in Recipe 8-1 differs only because of the addition of a LOOP construct. Instead of displaying only
one value, this example will loop through all the records that are returned from the query, and the loop
will exit when there are no remaining rows in the result. The example in Recipe 8-1 could entail the same
loop construct as the one shown in Solution #2 of this recipe, but it is only expected to return one row
since the query is based upon a primary and unique key value.

The choice for using DBMS_SQL as opposed to native dynamic SQL (NDS) depends on what you are
trying to achieve. DBMS_SQL will allow you to use a SQL string that is greater than 32KB in size, whereas
native dynamic SQL will not. However, there are other options for creating large SQL text strings and
parsing them with native dynamic SQL. Please see Recipe 8-11 for more details.

8-3. Writing a Dynamic INSERT Statement

Problem
Your application must insert data into a table, but you don’t know until runtime which columns you will
insert. For example, you are writing a procedure that will be used for saving records into the EMPLOYEES
table. However, the exact content to be saved is not known until runtime because the person who is
calling the procedure can decide whether they are including a DEPARTMENT_ID. If a DEPARTMENT_ID is
included, then the department will be included in the INSERT.

Solution
Create a string at runtime that will contain the INSERT statement text to be executed. Use bind variables
to substitute the values that are to be inserted into the database table. The following procedure accepts
user input for entry of a new employee record. Bind variables are used to substitute those values into the
SQL.

CREATE OR REPLACE PROCEDURE new_employee (first IN VARCHAR2,
 last IN VARCHAR2,
 email IN VARCHAR2,
 phone IN VARCHAR2,
 hired IN DATE,
 job IN VARCHAR2,
 dept IN NUMBER DEFAULT 0) AS
 v_sql VARCHAR2(1000);
BEGIN

CHAPTER 8 DYNAMIC SQL

162

 IF dept != 0 THEN
 v_sql := 'INSERT INTO EMPLOYEES (' ||
 'employee_id, first_name, last_name, email, ' ||
 'phone_number, hire_date, job_id, department_id) ' ||
 'VALUES(' ||
 ':id, :first, :last, :email, :phone, :hired, ' ||
 ':job_id, :dept)';

 EXECUTE IMMEDIATE v_sql
 USING employees_seq.nextval, first, last, email, phone, hired, job, dept;

 ELSE
 v_sql := 'INSERT INTO EMPLOYEES (' ||
 'employee_id, first_name, last_name, email, ' ||
 'phone_number, hire_date, job_id) ' ||
 'VALUES(' ||
 ':id, :first, :last, :email, :phone, :hired, ' ||
 ':job_id)';

 EXECUTE IMMEDIATE v_sql
 USING employees_seq.nextval, first, last, email, phone, hired, job;

 END IF;

 DBMS_OUTPUT.PUT_LINE('The employee has been successfully entered');
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('YOU MUST SUPPLY A VALUE FOR DEPARTMENT');
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('EMPLOYEE_ID ALREADY EXISTS');
END;

If the data entry clerk includes a department ID number for the employee when executing the

NEW_EMPLOYEE procedure, then the INSERT statement will differ slightly than it would if no department ID
were provided. The basic native dynamic SQL in this example does not differ much from those examples
demonstrated in Recipe 8-1 or Recipe 8-2 of this chapter.

Solution #2
The DBMS_SQL API can also be used to execute dynamic INSERT statements. Although dynamic DML is not
usually performed with DBMS_SQL very often, it can still be useful in some circumstances. The following
example performs the same task as Solution #1 to this recipe. However, it has been rewritten to use
DBMS_SQL instead of native dynamic SQL.

CREATE OR REPLACE PROCEDURE new_employee(first IN VARCHAR2,
 last IN VARCHAR2,
 email IN VARCHAR2,
 phone IN VARCHAR2,
 hired IN DATE,
 job IN VARCHAR2,
 dept IN NUMBER DEFAULT 0)

7

 CHAPTER 8 DYNAMIC SQL

163

AS
 v_sql VARCHAR2(1000);

 cursor_var NUMBER := DBMS_SQL.OPEN_CURSOR;
 rows_compelete NUMBER := 0;
 next_emp NUMBER := employee_seq.nextval;
BEGIN

 IF dept != 0 THEN
 v_sql := 'INSERT INTO EMPLOYEES (' ||
 'employee_id, first_name, last_name, email, ' ||
 'phone_number, hire_date, job_id, department_id) ' ||
 'VALUES(' ||
 ':id, :first, :last, :email, :phone, :hired, ' ||
 ':job_id, :dept)';

 ELSE
 v_sql := 'INSERT INTO EMPLOYEES (' ||
 'employee_id, first_name, last_name, email, ' ||
 'phone_number, hire_date, job_id) ' ||
 'VALUES(' ||
 ':id, :first, :last, :email, :phone, :hired, ' ||
 ':job_id)';
 END IF;
 DBMS_SQL.PARSE(cursor_var, v_sql, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(cursor_var, 1, ':id', next_emp);
 DBMS_SQL.BIND_VARIABLE(cursor_var, 2, ':first', first);
 DBMS_SQL.BIND_VARIABLE(cursor_var, 3, ':last', last);
 DBMS_SQL.BIND_VARIABLE(cursor_var, 4, ':email', email);
 DBMS_SQL.BIND_VARIABLE(cursor_var, 5, ':phone', phone);
 DBMS_SQL.BIND_VARIABLE(cursor_var, 6, ':hired');
 DBMS_SQL.BIND_VARIABLE(cursor_var, 7, ':job', job);
 IF dept != 0 then
 DBMS_SQL.BIND_VARIABLE(cursor_var, 8, ':dept', dept);
 END IF;
 rows_complete := DBMS_SQL.EXECUTE(cursor_var);
 DBMS_SQL.CLOSE_CURSOR(cursor_var);
 DBMS_OUTPUT.PUT_LINE('The employee has been successfully entered');
END;

How It Works
Using native dynamic SQL, creating an INSERT statement is almost identical to working with a query
string. As a matter of fact, the only difference is that you will not be making use of the INTO clause within
the EXECUTE IMMEDIATE statement. Standard PL/SQL can be used to create the SQL statement string in
order to process an INSERT statement that contains column names, table names, or WHERE clause values
that are not known until runtime.

CHAPTER 8 DYNAMIC SQL

164

■ Note If your SQL string contains any SQL that requires the use of single quotes, double up on the quotes.

Placing a single quote immediately after another signals the parser to place a single quote into the string that you

are creating.

Similarly to SQL queries using dynamic SQL, you should use bind variables to substitute values into
the SQL statement string where needed. As a refresher, bind variables are used within SQL queries or
statements to act as placeholders for values that are to be substituted at runtime. A bind variable begins
with a colon and is then followed by the variable name. The EXECUTE IMMEDIATE statement implements
the USING clause to list variables that contain values that will be substituted into the bind variables at
runtime. The order in which the variables are listed in the USING clause must concur with the positioning
of the bind variables within the SQL. The following is an example of an EXECUTE IMMEDIATE statement to
be used with a SQL statement such as an INSERT:

EXECUTE IMMEDIATE sql_statement_string
[USING variable1, variable2, etc];

It is usually a good idea to include an EXCEPTION block at the end of any code block. This is especially

true when working with dynamic queries or statements. An Oracle error will be raised if the INSERT
statement within the SQL string is invalid. If an EXCEPTION block were added to catch OTHERS, then you
could provide a well-written error message that describes the exact issue at hand. In most cases, users of
your application would prefer to see such a nice summary message rather than a cryptic Oracle error
message.

It is a good rule of thumb to maintain consistency throughout your application code. If you prefer to
use native dynamic SQL, then try to use it in all cases where dynamic SQL is a requirement. Likewise,
DBMS_SQL should be used throughout if you plan to make use of it instead. There are certain situations
when you may want to mix the two techniques in order to obtain information or use features that are not
available with one or the other. In Recipe 8-13, you will learn more about using both techniques within
the same block of PL/SQL code.

8-4. Writing a Dynamic Update Statement

Problem
Your application needs to execute an update statement, and you are not sure of the columns to be
updated until runtime. For example, your application will modify employee records. You would like to
construct an update statement that contains only the columns that have updated values.

Solution
Use native dynamic SQL to execute a SQL statement string that you prepare at application runtime. The
procedure in this example accepts employee record values as input. In this scenario, an application form
allows user entry for many of the fields that are contained within the EMPLOYEES table so that a particular
employee record can be updated. The values that are changed on the form should be included in the
UPDATE statement. The procedure queries the employee record and checks to see which values have been
updated. Only the updated values are included in the text of the SQL string that is used for the update.

 CHAPTER 8 DYNAMIC SQL

165

CREATE OR REPLACE PROCEDURE update_employees(id IN employees.employee_id%TYPE,
 first IN employees.first_name%TYPE,
 last IN employees.last_name%TYPE,
 email IN employees.email%TYPE,
 phone IN employees.phone_number%TYPE,
 job IN employees.job_id%TYPE,
 salary IN employees.salary%TYPE,
 commission_pct IN employees.commission_pct%TYPE,
 manager_id IN employees.manager_id%TYPE,
 department_id IN employees.department_id%TYPE)
 AS

 emp_upd_rec employees%ROWTYPE;

 sql_string VARCHAR2(1000);

 set_count NUMBER := 0;
BEGIN

 SELECT *
 INTO emp_upd_rec
 FROM employees
 WHERE employee_id = id;

 sql_string := 'UPDATE EMPLOYEES SET ';

 IF first != emp_upd_rec.first_name THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', FIRST_NAME =' || first || '''';
 ELSE
 sql_string := sql_string || ' FIRST_NAME =' || first || '''';
 set_count := set_count + 1;
 END IF;
 END IF;

 IF last != emp_upd_rec.last_name THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', LAST_NAME =''' || last || '''';
 ELSE
 sql_string := sql_string ||' LAST_NAME =''' || last || '''';
 set_count := set_count + 1;
 END IF;
 END IF;

 IF upper(email) != emp_upd_rec.email THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', EMAIL =''' || upper(email) || '''';
 ELSE
 sql_string := sql_string ||' EMAIL =''' || upper(email) || '''';
 set_count := set_count + 1;
 END IF;

CHAPTER 8 DYNAMIC SQL

166

 END IF;

 IF upper(phone) != emp_upd_rec.phone_number THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', PHONE_NUMBER =''' ||
 upper(phone) || '''';
 ELSE
 sql_string := sql_string ||' PHONE_NUMBER =''' ||
 upper(phone) || '''';
 set_count := set_count + 1;
 END IF;
 END IF;

 IF job != emp_upd_rec.job_id THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', JOB_ID =''' || job || '''';
 ELSE
 sql_string := sql_string ||' JOB_ID =''' || job || '''';
 set_count := set_count + 1;
 END IF;
 END IF;

 IF salary != emp_upd_rec.salary THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', SALARY =' || salary;
 ELSE
 sql_string := sql_string ||' SALARY =' || salary;
 set_count := set_count + 1;
 END IF;
 END IF;

 IF commission_pct != emp_upd_rec.commission_pct THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', COMMISSION_PCT =' ||
 commission_pct;
 ELSE
 sql_string := sql_string ||' COMMISSION_PCT =' ||
 commission_pct;
 set_count := set_count + 1;
 END IF;
 END IF;

 IF manager_id != emp_upd_rec.manager_id THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', MANAGER_ID =' ||
 manager_id;
 ELSE
 sql_string := sql_string ||' MANAGER_ID =' ||
 manager_id;
 set_count := set_count + 1;
 END IF;
 END IF;

 CHAPTER 8 DYNAMIC SQL

167

 IF department_id != emp_upd_rec.department_id THEN
 IF set_count > 0 THEN
 sql_string := sql_string ||', DEPARTMENT_ID =' ||
 department_id;
 ELSE
 sql_string := sql_string ||' DEPARTMENT_ID =' ||
 department_id;
 set_count := set_count + 1;
 END IF;
 END IF;

 sql_string := sql_string || ' WHERE employee_id = ' || id;

 IF set_count > 0 THEN
 EXECUTE IMMEDIATE sql_string;
 ELSE
 DBMS_OUTPUT.PUT_LINE('No update needed, ' ||
 'all fields match original values');
 END IF;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No matching employee found');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Data entry error has occurred, ' ||
 'please check values and try again' || sql_string);
END;

Execution and Results:

SQL> exec update_employees(187,
'Anthony',
'Cabrio',
'ACABRIO',
'650.509.4876',
 'SH_CLERK'
,6501,
.08,
121,
50);
No update needed, all fields match original values

As mentioned previously, this procedure accepts input from a user data entry form. The input

pertains to an existing employee’s database record. The values accepted as input are compared against
those that already exist in the database, and if they are different, then they are added into the SQL UPDATE
statement that is dynamically created. This code could be simplified by creating a separate function to
take care of comparing values and building the SQL string, but this procedure gives you a good idea of
how dynamic SQL can be used to EXECUTE an UPDATE statement.

CHAPTER 8 DYNAMIC SQL

168

How It Works
Dynamic SQL statement execution is straightforward when using native dynamic SQL. The procedure in
the solution to this recipe creates a SQL string based upon certain criteria, after which it is executed with
the use of the EXECUTE IMMEDIATE statement.

The EXECUTE IMMEDIATE statement works the same way for most DML statements. If you read Recipe
8-3 on creating and running a dynamic INSERT statement, then you can see that executing an UPDATE
statement works in the same manner.

Any values that need to be substituted into the SQL string should be coded as bind variables. For
more information regarding bind variables, please refer to Recipe 8-3. The format for executing an
UPDATE statement with the EXECUTE IMMEDIATE statement is as follows:

EXECUTE IMMEDIATE update_statement_string
[USING variable1, variable2, etc];

Just as with the execution of the INSERT statement in Recipe 8-3, the EXECUTE IMMEDIATE statement

requires the use of the USING clause only if there are variables that need to be substituted into the SQL
statement at runtime.

■ Note If you are able to write a static SQL UPDATE statement for your application, then do so. Use of dynamic SQL

will incur a small performance penalty.

The DBMS_SQL package can also be used to work with dynamic SQL updates. However, this technique
is not used very much since the introduction of native dynamic SQL in Oracle 9i. For an example of using
the DBMS_SQL package with DML statements, please refer to Recipe 8-3. Although the example in Recipe
8-3 demonstrates an INSERT statement, an UPDATE statement is processed the same way; only the SQL
string needs to be changed.

8-5. Writing a Dynamic Delete Statement

Problem
You need to create a procedure that will delete rows from a table. However, the exact SQL for deleting
the rows is not known until runtime. For instance, you need create a procedure to delete an employee
from the EMPLOYEES table, but rather than limit the procedure to accepting only employee ID numbers
for employee identification, you also want to accept an e-mail address. The procedure will determine
whether an e-mail address or an ID has been passed and will construct the appropriate DELETE
statement.

Solution
Use native dynamic SQL to process a string that is dynamically created based upon values that are
passed into the procedure. In the following example, a procedure is created that will build a dynamic
SQL string to delete an employee record. The DELETE statement syntax may vary depending upon what
type of value is passed into the procedure. Valid entries include EMPLOYEE_ID values or EMAIL values.

 CHAPTER 8 DYNAMIC SQL

169

CREATE OR REPLACE PROCEDURE delete_employee(emp_value IN VARCHAR2) AS

 is_number NUMBER := 0;
 valid_flag BOOLEAN := FALSE;
 sql_stmt VARCHAR2(1000);
 emp_count NUMBER := 0;
BEGIN
 sql_stmt := 'DELETE FROM EMPLOYEES ';

 -- DETERMINE IF emp_value IS NUMERIC, IF SO THEN QUERY
 -- DATABASE TO FIND OCCURRENCES OF MATCHING EMPLOYEE_ID
 IF LENGTH(TRIM(TRANSLATE(emp_value, ' +-.0123456789', ' '))) IS NULL THEN
 SELECT COUNT(*)
 INTO emp_count
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_value;

 IF emp_count > 0 THEN
 sql_stmt := sql_stmt || 'WHERE EMPLOYEE_ID = :emp_val';
 valid_flag := TRUE;
 END IF;
 ELSE
 SELECT COUNT(*)
 INTO emp_count
 FROM EMPLOYEES
 WHERE EMAIL = upper(emp_value);

 IF emp_count > 0 THEN
 sql_stmt := sql_stmt || 'WHERE EMAIL = :emp_val';
 valid_flag := TRUE;
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN

 EXECUTE IMMEDIATE sql_stmt
 USING emp_value;

 DBMS_OUTPUT.PUT_LINE('Employee has been deleted');
 ELSE
 DBMS_OUTPUT.PUT_LINE('No matching employee found, please try again');
 END IF;

END;

The procedure can be called by passing in either an EMPLOYEE_ID value or an EMAIL value. If a

matching employee record is found, then it will be deleted from the database table.

CHAPTER 8 DYNAMIC SQL

170

How It Works
Dynamic SQL can be used to execute DELETE statements as well. In the solution to this recipe, a dynamic
SQL string is built that will remove an employee entry that contains a matching EMPLOYEE_ID or EMAIL
value that is passed into the procedure as a parameter. The parameter is checked to find out whether it is
a numeric or alphanumeric value by using a combination of the LENGTH, TRIM, and TRANSLATE functions. If
it is numeric, then it is assumed to be an EMPLOYEE_ID value, and the database is queried to see whether
there are any matches. If the parameter is found to be alphanumeric, then it is assumed to be an EMAIL
value, and the database is queried to see whether there are any matches. If matches are found in either
case, then a dynamic SQL string is built to DELETE the matching record from the database.

In this example, native dynamic SQL is used to perform the database operation. The DBMS_SQL
package can also be used to perform this task using the same techniques that were demonstrated in
Recipe 8-3.

8-6. Returning Data from a Dynamic Query into a Record

Problem
You are writing a block of code that will need to use dynamic SQL to execute a query because the exact
SQL string is not known until runtime. The query needs to return the entire contents of the table row so
that all columns of data can be used. You want to return the columns into a record variable.

Solution
Create a native dynamic SQL query to accommodate the SQL string that is unknown until runtime. FETCH
the data using BULK COLLECT into a table of records. Our solution example shows rows from the jobs table
being fetched into records, after which the individual record columns of data can be worked with. The
following code block demonstrates this technique:

CREATE OR REPLACE PROCEDURE obtain_job_info(min_sal NUMBER DEFAULT 0,

max_sal NUMBER DEFAULT 0)
AS
 sql_text VARCHAR2(1000);
 TYPE job_tab IS TABLE OF jobs%ROWTYPE;
 job_list job_tab;
 job_elem jobs%ROWTYPE;
 max_sal_temp NUMBER;
 filter_flag BOOLEAN := FALSE;
 cursor_var NUMBER;
 TYPE cur_type IS REF CURSOR;
 cur cur_type;
BEGIN
 sql_text := 'SELECT * ' ||
 'FROM JOBS WHERE ' ||
 'min_salary >= :min_sal ' ||
 'and max_salary <= :max_sal';

 CHAPTER 8 DYNAMIC SQL

171

 IF max_sal = 0 THEN
 SELECT max(max_salary)
 INTO max_sal_temp
 FROM JOBS;
 ELSE
 max_sal_temp := max_sal;
 END IF;

 OPEN cur FOR sql_text USING min_sal, max_sal_temp;
 FETCH cur BULK COLLECT INTO job_list;
 CLOSE cur;

 FOR i IN job_list.FIRST .. job_list.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(job_list(i).job_id || ' - ' || job_list(i).job_title);
 END LOOP;

END;

As the salaries are obtained from the user input, they are used to determine how the bind variables

will be populated within the query. The SQL is then executed, and the results are traversed. Each record
is fetched and returned into a PL/SQL table of job records using BULK_COLLECT, and then in turn, each
record is used to process the results. In this example, the data is simply printed out using
DBMS_OUTPUT.PUT_LINE, but any number of tasks could be completed with the data.

How It Works
Dynamic SQL can be processed in a number of ways. In this solution, a record type is created by using
the %ROWTYPE attribute of the table that is being queried. In this case, the %ROWTYPE attribute of the JOBS
table is being used as a record. The data that is returned from performing a SELECT * on the JOBS table
will be stored within that record, and then it will be processed accordingly. The record is created using
the following syntax:

record_name table_name%ROWTYPE;

Using this format, the record_name is any name of your choice that complies with PL/SQL’s naming

conventions. The table_name is the name of the table from which you will be gathering the data for each
column, and the %ROWTYPE attribute is a special table attribute that creates a record type.

To process each record, create a REF CURSOR using the dynamic SQL string and perform a BULK
COLLECT to fetch each row of data into a record in the table of JOBS records. The BULK COLLECT will load all
of the resulting records at once into a PL/SQL collection object. Once all the data has been retrieved into
an object, it can be processed accordingly. The BULK COLLECT is much more efficient than fetching each
row from the table one-by-one using a LOOP construct.

8-7. Executing a Dynamic Block of PL/SQL

Problem
You want to execute a specific stored procedure based upon events that occur within your application.
Therefore, you need to provide the ability for your application to execute procedures that are unknown
until runtime. In short, you want to execute PL/SQL in the same dynamic manner as SQL.

CHAPTER 8 DYNAMIC SQL

172

Solution #1
Native dynamic SQL can be used to create and execute a block of code at runtime. This strategy can be
used to create a dynamic block of code that executes a given procedure when an event occurs. In this
example, a procedure is created that accepts an event identifier. An event handler within the application
can call upon this procedure passing an event identifier, and subsequently a procedure that can be
determined via the identifier will be invoked.

-- Create first Procedure
CREATE OR REPLACE PROCEDURE TEST_PROCEDURE1 AS
BEGIN
 DBMS_OUTPUT.PUT_LINE('YOU HAVE EXECUTED PROCEDURE 1…');
END;

-- Create Second Procedure
CREATE OR REPLACE PROCEDURE TEST_PROCEDURE2 AS
BEGIN
 DBMS_OUTPUT.PUT_LINE('YOU HAVE EXECUTED PROCEDURE 2…');
END;

-- Create Event Handling Procedure
CREATE OR REPLACE PROCEDURE run_test(test_id IN NUMBER DEFAULT 1) AS
 sql_text VARCHAR2(200);
BEGIN
 sql_text := 'BEGIN ' ||
 ' TEST_PROCEDURE' || test_id || '; ' ||
 'END;';

 EXECUTE IMMEDIATE sql_text;

END;

When an event handler passes a given event number to this procedure, it dynamically creates a code

block that is used to execute that procedure, passing the parameters the procedure needs. This solution
provides the ultimate flexibility for creating an event handler within your applications.

Solution #2
DBMS_SQL can also be used to execute the same dynamic code. The following example demonstrates how
this is done.

CREATE OR REPLACE PROCEDURE run_test(test_id IN NUMBER DEFAULT 1) AS
 sql_text VARCHAR2(200);
 cursor_var NUMBER := DBMS_SQL.OPEN_CURSOR;
 rows NUMBER;
BEGIN
 sql_text := 'BEGIN ' ||
 ' TEST_PROCEDURE' || test_id || '; ' ||
 'END;';

 DBMS_SQL.PARSE(cursor_var, sql_text, DBMS_SQL.NATIVE);

 CHAPTER 8 DYNAMIC SQL

173

 rows := DBMS_SQL.EXECUTE(cursor_var);
 DBMS_SQL.CLOSE_CURSOR(cursor_var);

END;

How It Works
Native dynamic SQL allows processing of a SQL statement via the EXECUTE IMMEDIATE statement. This
can be used to the advantage of the application and provide the ability to create dynamic blocks of
executable code. By doing so, you can create an application that allows more flexibility, which can help
ensure that your code is more easily manageable.

In the solution to this recipe, an unknown procedure name along with its parameters is
concatenated into a SQL string that forms a code block. This code block is then executed using the
EXECUTE IMMEDIATE statement.

Using native dynamic SQL, the array of parameters has to be manually processed to create the SQL
string and assign each of the array values to the USING clause of the EXECUTE IMMEDIATE statement. This
technique works quite well, but there is a different way to implement the same procedure.

As far as comparing native dynamic SQL and DBMS_SQL for dynamic code block execution, which
code is better? That is up to you to decide. If you are using native dynamic SQL for all other dynamic SQL
processing within your application, then it is probably a good idea to stick with it instead of mixing both
techniques. However, if you are working with some legacy code that perhaps includes a mixture of both
DBMS_SQL and native dynamic SQL, then you may prefer to write a dynamic code block using DBMS_SQL
just to save some time and processing.

8-8. Creating a Table at Runtime

Problem
Your application needs to have the ability to create tables based upon user input. The user has the ability
to add additional attributes to some of your application forms, and when this is done, a new attribute
table needs to be created to hold the information.

Solution
Create a table at runtime using native dynamic SQL. Write a procedure that accepts a table name as an
argument and then creates a SQL string including the DDL that is required for creating that table. The
table structure will be hard-coded since the structure for an attribute table will always be the same
within your application. The code that follows demonstrates this technique by creating a procedure
named CREATE_ATTR_TABLE that dynamically creates attribute tables.

CREATE OR REPLACE PROCEDURE create_attr_table(table_name VARCHAR2) AS
 BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE ' || table_name ||
 '(ATTRIBUTE_ID NUMBER PRIMARY KEY,
 ATTRIBUTE_NAME VARCHAR2(150) NOT NULL,
 ATTRIBUTE_VALUE VARCHAR2(150))';
 END create_attr_table;

CHAPTER 8 DYNAMIC SQL

174

This procedure is invoked by the application whenever a user determines that additional attributes
are required for a particular application form. That form will then have its own attribute table created,
and the user can then provide additional fields/attributes to customize the form as needed.

How It Works
Dynamic SQL can be used to create database objects at runtime. In this recipe, it is used to create tables.
Native dynamic SQL is used in this example, and the EXECUTE IMMEDIATE statement performs the work.
When creating a table at runtime, generate a string that contains the necessary SQL to create the object.
Once that task has been completed, issue the EXECUTE IMMEDIATE statement passing the generated SQL
string. The format to use along with the EXECUTE IMMEDIATE statement to create objects is as follows:

 EXECUTE IMMEDIATE SQL_string;

The SQL_string in this example is a dynamically created string that will create an object. In the case

of creating objects, the USING clause is not used because you cannot use bind variables for substituting
object names or attributes such as column names.

■ Please use care when concatenating user input variables with SQL text because the technique poses a security

concern. Specifically, you open the door to the much-dreaded SQL injection attack. Refer to Recipe 8-14 for more

details and for information on protecting yourself.

8-9. Altering a Table at Runtime

Problem
Your application provides the ability to add attributes to forms in order to store additional information.
You need to provide users with the ability to make those attribute fields larger or smaller based upon
their needs.

Solution
Create a procedure that will provide the ability to alter tables at runtime using native dynamic SQL. The
procedure in this solution will accept two parameters, those being the table name to be altered and the
column name along with new type declaration. The procedure assembles a SQL string using the
arguments provided by the user and then executes it using native dynamic SQL. The following code
demonstrates this solution:

CREATE OR REPLACE PROCEDURE modify_table(tab_name VARCHAR2,
 tab_info VARCHAR2) AS
 sql_text VARCHAR2(1000);
BEGIN
 sql_text := 'ALTER TABLE ' || tab_name ||
 ' MODIFY ' || tab_info;
 DBMS_OUTPUT.PUT_LINE(sql_text);

 CHAPTER 8 DYNAMIC SQL

175

 EXECUTE IMMEDIATE sql_text;
 DBMS_OUTPUT.PUT_LINE('Table successfully altered…');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(‘An error has occurred, table not modified’);
END;

The procedure determines whether the user-defined data is valid. If so, then the EXECUTE IMMEDIATE

statement executes the SQL string that was formed. Otherwise, the user will see an alert displayed.

How It Works
Similar to creating objects at runtime, Oracle provides the ability to alter objects using dynamic SQL.
The same technique is used for constructing the SQL string as when creating an object, and that string is
eventually executed via the EXECUTE IMMEDIATE statement. The EXECUTE IMMEDIATE statement for altering
a table at runtime uses no clause, because it is not possible to use bind variables with an ALTER TABLE
statement. If you try to pass in bind variable values, then you will receive an Oracle error.

The following format should be used when issuing the EXECUTE IMMEDIATE statement for SQL text
containing an ALTER TABLE statement:

EXECUTE IMMEDIATE alter_table_sql_string;

The most important thing to remember when issuing a DDL statement using dynamic SQL is that

you will need to concatenate all the strings and variables in order to formulate the final SQL string that
will be executed. Bind variables will not work for substituting table names or column names/attributes.

8-10. Finding All Tables That Include a Specific Column Value

Problem
You are required to update all instances of a particular data column value across multiple tables within
your database.

Solution
Search all user tables for the particular column you are interested in finding. Create a cursor that will be
used to loop through all the results and execute a subsequent UPDATE statement in each iteration of the
loop. The UPDATE statement will update all matching column values for the table that is current for that
iteration of the cursor.

The following example shows how this technique can be performed. The procedure will be used to
change a manager ID when a department or job position changes management.

CREATE OR REPLACE PROCEDURE change_manager(current_manager_id NUMBER,

new_manager_id NUMBER)
AS

cursor manager_tab_cur is
select table_name
from user_tab_columns

CHAPTER 8 DYNAMIC SQL

176

where column_name = 'MANAGER_ID'
and table_name not in (select view_name from user_views);

rec_count number := 0;
ref_count number := 0;

BEGIN

 -- Print out the tables which will be updated

 DBMS_OUTPUT.PUT_LINE('Tables referencing the selected MANAGER ID#:' ||
 current_manager_id);

 FOR manager_rec IN manager_tab_cur LOOP
 EXECUTE IMMEDIATE 'select count(*) total ' ||
 'from ' || manager_rec.table_name ||
 ' where manager_id = :manager_id_num'
 INTO rec_count
 USING current_manager_id;

 if rec_count > 0 then
 DBMS_OUTPUT.PUT_LINE(manager_rec.table_name || ': ' || rec_count);
 ref_count := ref_count + 1;
 end if;

 rec_count := 0;

 END LOOP;

 if ref_count > 0 then
 DBMS_OUTPUT.PUT_LINE('Manager is referenced in ' || ref_count || ' tables.');
 DBMS_OUTPUT.PUT_LINE('...Now Changing the Manager Identifier...');
 end if;

 -- Perform the actual table updates

 FOR manager_rec IN manager_tab_cur LOOP
 EXECUTE IMMEDIATE 'select count(*) total ' ||
 'from ' || manager_rec.table_name ||
 ' where manager_id = :manager_id_num'
 INTO rec_count
 USING current_manager_id;

 if rec_count > 0 then

 EXECUTE IMMEDIATE 'update ' || manager_rec.table_name || ' ' ||
 'set manager_id = :new_manager_id ' ||
 'where manager_id = :old_manager_id'
 USING new_manager_id, current_manager_id;

 end if;

 CHAPTER 8 DYNAMIC SQL

177

 rec_count := 0;

 END LOOP;

 -- Print out the tables which still reference the manager number.

 FOR manager_rec IN manager_tab_cur LOOP
 EXECUTE IMMEDIATE 'select count(*) total ' ||
 'from ' || manager_rec.table_name ||
 ' where manager_id = :manager_id'
 INTO rec_count
 USING current_manager_id;

 if rec_count > 0 then
 DBMS_OUTPUT.PUT_LINE(manager_rec.table_name || ': ' || rec_count);
 ref_count := ref_count + 1;
 end if;

 rec_count := 0;

 END LOOP;

 if ref_count > 0 then
 DBMS_OUTPUT.PUT_LINE('Manager #: ' || current_manager_id
 || ' is now referenced in ' ||
 ref_count || ' tables.');
 DBMS_OUTPUT.PUT_LINE('...There should be no tables listed above...');
 end if;

end;

Since MANAGER_ID depends upon a corresponding MANAGER_ID within the DEPARTMENTS table, you must

first ensure that the MANAGER_ID that you want to change to is designated to a department within that
table. In the following scenario, a manager is added to a department that does not have a manager.
Afterward, the manager with ID of 205 is swapped for the newly populated manager.

SQL> update departments
 2 set manager_id = 241
 3 where department_id = 270;

1 row updated.

SQL> exec change_manager(205, 241);
Tables referencing the selected MANAGER ID#:205
DEPARTMENTS: 1
EMP: 1
EMPLOYEES: 1
Manager is referenced in 3 tables.
...Now Changing the Manager Identifier...
Manager #: 205 is now referenced in 3 tables.
...There should be no tables listed above...

CHAPTER 8 DYNAMIC SQL

178

PL/SQL procedure successfully completed.

■ Note If you attempt to swap a manager with one that is not associated with a department, then you will receive

a foreign key error. This same concept holds true in the real world—ensure that constraints are reviewed before

applying this technique.

If management decides to change a manager for a particular department, then this procedure will
be called. The caller will pass in the old manager’s ID number and the new manager’s ID number. This
procedure will then query all tables within the current schema for a matching current manager ID and
update it to reflect the new ID number.

How It Works
To determine all instances of a specific column or database field, you must search all database tables for
that column name. Of course, this assumes that the database was created using the same name for the
same column in each different table. If columns containing the same data are named differently across
tables, then this recipe’s technique will not work.

■ Note Although most relational databases are set up with efficiency in mind and only populate data for a specific

field value into one database table column, there are some legacy databases that still use the same fields across

more than one table.

As the solution to this recipe entails, assume that a column name is coded into the procedure, and
all tables will then be searched to find out whether that column exists. You can perform the search using
the built-in USER_TAB_COLUMNS data dictionary view. This view is comprised of column information for all
the tables within a particular schema. Querying any Oracle view that is prefixed with USER_ indicates that
the view pertains to data contained within the current user’s schema only. Querying the
USER_TAB_COLUMNS view allows a table name and column name to be specified. In this case, since you
need to find all tables that contain a specific column, query the USER_TAB_COLUMNS view to return all
instances of TABLE_NAME where COLUMN_NAME is equal to the name that is passed into the procedure. This
query should be defined as a cursor variable so that it can be parsed via a FOR loop in the code block.

■ Warning Be sure to exclude views from this process, or you may receive an error from attempting to update a

value that is contained within a view if it is not an updatable view.

Now that the cursor is ready to parse all table names that contain a matching column, it is time to
loop through the cursor and query each table that contains that column for a matching value. A user

 CHAPTER 8 DYNAMIC SQL

179

passes two values into the procedure: current manager ID and new manager ID. In the solution to this
recipe, each table that contains a matching column is queried so that you can see how many matches
were found prior to the updates taking place. A counter is used to tally the number of matches found
throughout the tables. Next, looping through the cursor again performs the actual updates. This time,
the tables are each queried to find matches again, but when a match is found, then that table will be
updated so that the value is changed from the old value to the new value.

Lastly, the cursor is parsed again, and each table is queried to find existing matches once again. This
last loop is done for consistency and to ensure that all matches have been found and updated to the
current value. If any matches are found during this last loop, then all changes should be rolled back, and
the changes should be manually processed instead.

This procedure can be updated to work with any column value change that may be needed. The
code can also be shortened significantly if you do not want to perform verifications prior to and after
performing an update.

8-11 Storing Dynamic SQL in Large Objects

Problem
The SQL code that you need to assemble at runtime is likely to exceed the 32KB limit that is bound to
VARCHAR2 types. You need to be able to store dynamic SQL text in a type that will allow more for a large
amount of text.

Solution #1
Declare a CLOB variable, and store your SQL string within it. After the CLOB has been created, execute the
SQL. This can be done using either native dynamic SQL or the DBMS_SQL package. For the example,
assume that a block of text is being read from an external file, and it will be passed to a procedure to be
processed. That text will be the SQL string that will be dynamically processed within the procedure.
Since the external text file can be virtually any size, this text must be read into a CLOB data type and then
passed to the procedure in this example for processing. The following procedure processes the CLOB as
dynamic SQL.

The first example demonstrates the parsing and execution of a dynamic SQL statement that has
been stored in a CLOB using the DBMS_SQL package. Note that this procedure does not return any value, so
it is not meant for issuing queries but rather for executing code.

CREATE OR REPLACE PROCEDURE execute_clob(sql_text CLOB) AS
 sql_string CLOB;
 cur_var BINARY_INTEGER;
 ret_var INTEGER;
 return_value VARCHAR2(100);
BEGIN
 sql_string := sql_text;
 cur_var := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cur_var, sql_string, DBMS_SQL.NATIVE);
 ret_var := DBMS_SQL.EXECUTE(cur_var);
 DBMS_SQL.CLOSE_CURSOR(cur_var);
END;

CHAPTER 8 DYNAMIC SQL

180

Solution #2
The second example is the same procedure written to use native dynamic SQL. You will notice that the
code is a bit shorter, and there is less work that needs to be done in order to complete the same
transaction.

CREATE OR REPLACE PROCEDURE execute_clob_nds(sql_text IN CLOB) AS
 sql_string CLOB;

BEGIN
 sql_string := sql_text;
 EXECUTE IMMEDIATE sql_string;
END;

As noted previously, the native dynamic SQL is easier to follow and takes less code to implement.
For the sake of maintaining a current code base, use of native dynamic SQL would be encouraged.
However, DBMS_SQL is still available and offers different options as mentioned in the first recipes in this
chapter.

How It Works
Oracle added some new features for working with dynamic SQL into the Oracle Database 11g release.
Providing the ability to store dynamic SQL into a CLOB is certainly a useful addition. Prior to Oracle
Database 11g, the only way to dynamically process a string that was larger than 32KB was to concatenate
two VARCHAR types that were at or near 32KB in size. The largest string that could be processed by native
dynamic SQL was 64KB. With the release of Oracle Database 11g, the CLOB (character large object) can be
used in such cases, mitigating the need to concatenate two different variables to form the complete SQL.

Using DBMS_SQL and its PARSE function, SQL that is stored within a CLOB can be easily processed. The
following lines of code are the lines from the first solution that read and process the CLOB:

cur_var := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cur_var, v_sql, DBMS_SQL.NATIVE);
ret_var := DBMS_SQL.EXECUTE(cur_var);
DBMS_SQL.CLOSE_CURSOR(cur_var);

The first line opens a new cursor using DBMS_SQL.OPEN_CURSOR. It assigns an integer to the cur_var
variable, which is then passed to the DBMS_SQL.PARSE procedure. DBMS_SQL.PARSE also accepts the SQL
CLOB and a constant DBMS_SQL.NATIVE that helps discern the dialect that should be used to process the
SQL. The dialect is also referred to as the language_flag, and it is used to determine how Oracle will
process the SQL statement. Possible values include V6 for version 6 behavior, V7 for Oracle database 7
behavior, and NATIVE to specify normal behavior for the database to which the program is connected.
After the SQL has been parsed, it can be executed using the DBMS_SQL.EXECUTE function. This function
will accept the cursor variable as input and execute the SQL. A code of 0 is returned if the SQL is
executed successfully. Lastly, remember to close the cursor using DBMS_SQL.CLOSE_CURSOR and passing
the cursor variable to it.

The example in Solution #2 of this recipe demonstrates the use of native dynamic SQL for execution
of dynamic SQL text that is stored within a CLOB. Essentially no differences exist between the execution of
SQL text stored in a VARCHAR data type as opposed to SQL text stored within a CLOB for native dynamic
SQL. The code is short and precise, and it is easy to read.

 CHAPTER 8 DYNAMIC SQL

181

8-12. Passing NULL Values to Dynamic SQL

Problem
You want to pass a NULL value to a dynamic query that you are using. For example, you want to query the
EMPLOYEES table for all records that have a NULL MANAGER_ID value.

Solution
Create an uninitialized variable, and place it into the USING clause. In this example, a dynamic query is
written and executed using native dynamic SQL. The dynamic query will retrieve all employees who do
not currently have a manager assigned to their record. To retrieve the records that are required, the
WHERE clause needs to filter the selection so that only records containing a NULL MANAGER_ID value are
returned.

DECLARE
 TYPE cur_type IS REF CURSOR;
 cur cur_type;
 null_value CHAR(1);
 sql_string VARCHAR2(150);
 emp_rec employees%ROWTYPE;
BEGIN
 sql_string := 'SELECT * ' ||
 'FROM EMPLOYEES ' ||
 'WHERE MANAGER_ID IS :null_val';

 OPEN cur FOR sql_string USING null_value;
 LOOP
 FETCH cur INTO emp_rec;
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name ||
 ' - ' || emp_rec.email);
 EXIT WHEN cur%NOTFOUND;
 END LOOP;
 CLOSE cur;
 END;

In this solution, the bind variable :null_val has an uninitialized variable value substituted in its

place. This will cause the query to evaluate the bind variable as a NULL value. All records that reside
within the EMPLOYEES table and do not have a MANAGER_ID assigned to them should be printed by the
DBMS_OUTPUT package.

How It Works
It is not possible to simply pass a NULL value using native dynamic SQL. At least, you cannot pass a NULL
as a literal. However, oftentimes it is useful to initialize a bind variable to null.

An uninitialized variable in PL/SQL inherently has the value of NULL. Hence, if you do not initialize a
variable, then it will contain a NULL value. Passing an uninitialized variable via the EXECUTE IMMEDIATE
statement will have the same effect as substituting a NULL value for a bind variable.

CHAPTER 8 DYNAMIC SQL

182

8-13. Switching Between DBMS_SQL and Native Dynamic SQL

Problem
Your consulting company is currently migrating all its applications from using DBMS_SQL to native
dynamic SQL. To help ensure that the migration can be done piecemeal, you want to provide the ability
to switch between the two different techniques so that legacy code can coexist with the newer native
dynamic SQL.

Solution
When you need both the DBMS_SQL package and native dynamic SQL, you can switch between them using
the DBMS_SQL.TO_REFCURSOR and DBMS_SQL.TO_CURSOR_NUMBER APIs. The DBMS_SQL.TO_REFCURSOR API
provides the ability to execute dynamic SQL using the DBMS_SQL package and then convert the DBMS_SQL
cursor to a REF CURSOR. The DBMS_SQL.TO_CURSOR_NUMBER API allows for executing dynamic SQL via a REF
CURSOR and then converting to DBMS_SQL for data retrieval.

The following example illustrates the usage of DBMS_SQL.TO_REFCURSOR. In the example, a simple
dynamic query is being executed using DBMS_SQL, and the cursor is then being converted to a REF CURSOR.

DECLARE
 sql_string CLOB;
 cur_var BINARY_INTEGER := DBMS_SQL.OPEN_CURSOR;
 ref_cur SYS_REFCURSOR;
 return_value BINARY_INTEGER;
 cur_rec jobs%ROWTYPE;
 salary NUMBER := &salary;
BEGIN
 -- Formulate query
 sql_string := 'SELECT * FROM JOBS ' ||
 'WHERE MAX_SALARY >= :sal';
 -- Parse SQL
 DBMS_SQL.PARSE(cur_var, sql_string, DBMS_SQL.NATIVE);

 -- Bind variable(s)
 DBMS_SQL.BIND_VARIABLE(cur_var, 'sal', salary);

 -- Execute query and convert to REF CURSOR

 return_value := DBMS_SQL.EXECUTE(cur_var);
 ref_cur := DBMS_SQL.TO_REFCURSOR(cur_var);
 DBMS_OUTPUT.PUT_LINE('Jobs that have a maximum salary over ' || salary);
 LOOP
 FETCH ref_cur INTO cur_rec;
 DBMS_OUTPUT.PUT_LINE(cur_rec.job_id || ' - ' || cur_rec.job_title);
 EXIT WHEN ref_cur%NOTFOUND;
 END LOOP;

 CLOSE ref_cur;

END;

 CHAPTER 8 DYNAMIC SQL

183

The example prompts for the entry of a maximum salary via the :sal bind variable and the SQL*Plus

&salary substitution variable. The DBMS_SQL API then binds the maximum salary that was entered to the
dynamic SQL string and executes the query to find all jobs that have a maximum salary greater than the
amount that was entered. Once the query is executed, the cursor is converted to a REF CURSOR using the
DBMS_SQL.TO_REFCURSOR API. Native dynamic SQL is then used to process the results of the query. As you
can see, the native dynamic SQL is much easier to read and process. The advantage of converting to a
REF CURSOR is to have the ability to easily process code using native dynamic SQL but still have some of
the advantages of using DBMS_SQL for querying the data. For instance, if the number of bind variables was
unknown until runtime, then DBMS_SQL would be required.

A similar technique can be used if DBMS_SQL is required to process the results of a query. The
DBMS_SQL.TO_CURSOR_NUMBER API provides the ability to convert a cursor from a REF CURSOR to DBMS_SQL.
The following example shows the same query on the JOBS table, but this time native dynamic SQL is used
to set up the query and execute it, and DBMS_SQL is used to describe the table structure. One of the nice
features of the DBMS_SQL API is that it is possible to describe the columns of a query that will be returned.

DECLARE
 sql_string CLOB;
 ref_cur SYS_REFCURSOR;
 cursor_var BINARY_INTEGER;
 cols_var BINARY_INTEGER;
 desc_var DBMS_SQL.DESC_TAB;
 v_job_id NUMBER;
 v_job_title VARCHAR2(25);
 salary NUMBER(6) := &salary;
 return_val NUMBER;

BEGIN
 -- Formulate query
 sql_string := 'SELECT * FROM JOBS ' ||
 'WHERE MAX_SALARY >= :sal';
 -- Open REF CURSOR
 OPEN ref_cur FOR sql_string USING salary;

 cursor_var := DBMS_SQL.TO_CURSOR_NUMBER(ref_cur);
 DBMS_SQL.DESCRIBE_COLUMNS(cursor_var, cols_var, desc_var);
 DBMS_SQL.CLOSE_CURSOR(cursor_var);

 FOR x IN 1 .. cols_var LOOP
 DBMS_OUTPUT.PUT_LINE(desc_var(x).col_name || ' - ' ||
 CASE desc_var(x).col_type
 WHEN 1 THEN 'VARCHAR2'
 WHEN 2 THEN 'NUMBER'
 ELSE 'OTHER'
 END);
 END LOOP;
END;

Each of these techniques has their place within the world of PL/SQL programming. Using this type

of conversion is especially useful for enabling your application to use the features DBMS_SQL has to offer
without compromising the ease and structure of native dynamic SQL.

CHAPTER 8 DYNAMIC SQL

184

How It Works
Oracle Database 11g added some new capabilities to dynamic SQL. One of those new features is the
ability to convert between native dynamic SQL and DBMS_SQL. DBMS_SQL provides some functionality that
is not offered by the newer and easier native dynamic SQL API. Now that Oracle Database 11g provides
the ability to make use of native dynamic SQL but still gain the advantages of using DBMS_SQL, Oracle
dynamic SQL is much more complete.

The DBMS_SQL.TO_REFCURSOR API is used to convert SQL that is using DBMS_SQL into a REF CURSOR,
which allows you to work with the resulting records using native dynamic SQL. To convert SQL to a REF
CURSOR, you will use DBMS_SQL to parse the SQL, bind any variables, and finally to execute it. Afterward,
you call DBMS_SQL.TO_REFCURSOR and pass the original DBMS_SQL cursor as an argument. This will return a
REF CURSOR that can be used to work with the results from the query. The statement that performs the
conversion contains DBMS_SQL.EXECUTE. The EXECUTE function accepts a DBMS_SQL cursor as an argument.
As a result, a REF CURSOR is returned, and it can be used to work with the results from the dynamic query.

Conversely, DBMS_SQL.TO_CURSOR_NUMBER can be used to convert a REF CURSOR into a DBMS_SQL cursor.
You may choose to do this in order to use some additional functionality that DBMS_SQL has to offer such
as the ability to DESCRIBE an object (DESCRIBE is a SQL*Plus feature). As you can see in the second
example, native dynamic SQL is used to open the REF CURSOR and bind the variable to the SQL. Once this
has been completed, the cursor is converted to DBMS_SQL using DBMS_SQL.TO_CURSOR_NUMBER and passing
the REF CURSOR. After this conversion is complete, you can utilize the DBMS_SQL API to work with the
resulting cursor.

8-14. Guarding Against SQL Injection Attacks

Problem
To provide the best security for your application, you want to ensure that your dynamic SQL statements
are unable to be altered as a result of data entered from an application form.

Solution
Take care to provide security against SQL injection attacks by validating user input prior and using it in
your dynamic SQL statements or queries. The easiest way to ensure that there are no malicious
injections into your SQL is to make use of bind variables.

The following code is an example of a PL/SQL procedure that is vulnerable to SQL injection because
it concatenates a variable that is populated with user input and does not properly validate the input
prior:

CREATE OR REPLACE PROCEDURE check_password(username IN VARCHAR2) AS
 sql_stmt VARCHAR2(1000);
 password VARCHAR2(30);
BEGIN
 sql_stmt := 'SELECT password ' ||
 'FROM user_records ' ||
 'WHERE username = ''' || username || ''';
 EXECUTE sql_stmt
 INTO password;

 -- PROCESS PASSWORD
END;

 CHAPTER 8 DYNAMIC SQL

185

To properly code this example to guard against SQL injection, use bind variables. The following is

the same procedure that has been rewritten to make it invulnerable to SQL injection:

CREATE OR REPLACE PROCEDURE check_password(username IN VARCHAR2) AS
 sql_stmt VARCHAR2(1000);
 password VARCHAR2(30);
BEGIN
 sql_stmt := 'SELECT password ' ||
 'FROM user_records ' ||
 'WHERE username = :username';

 EXECUTE sql_stmt
 INTO password
 USING username;

 -- PROCESS PASSWORD
END;

Making just a couple of minor changes can significantly increase the security against SQL injection

attacks.

How It Works
SQL injection attacks can occur when data that is accepted as input from an application form is
concatenated into dynamic SQL queries or statements without proper validation. SQL injection is a form
of malicious database attack that is caused by a user placing some code or escape characters into a form
field so that the underlying application SQL query or statement becomes affected in an undesirable
manner. In the solution to this recipe, all passwords stored in the USER_RECORDS table could be
compromised if a malicious user were to place a line of text similar to the following into the form field
for the USERNAME:

'WHATEVER '' OR username is NOT NULL--'

The strange-looking text that you see here can cause major issues because it essentially changes the

query to read as follows:

SELECT password
FROM user_records
WHERE username = 'WHATEVER ' OR username is NOT NULL;

Bind variables can be used to guard against SQL injection attacks, because their contents are not

interpreted at all by Oracle. The value of a bind variable is never parsed as part of the string containing
the SQL query or statement to be executed. Thus, the use of bind variables provides absolute protection
against SQL injection attacks.

Another way to safeguard your code against SQL injection attacks is to validate user input to ensure
that it is not malicious. Only valid input should be used within a statement or query.

There are ways to validate user input depending upon the type of input you are receiving. For
instance, to verify the integrity of user input, you can use regular expressions. If you are expecting to
receive an e-mail address from a user input field, then the value that is passed into your code should be
verified to ensure that it is in proper format of an e-mail address. Here’s an example:

CHAPTER 8 DYNAMIC SQL

186

IF owa_pattern.match(email_variable,'^\w{1,}[.,0-9,a-z,A-Z,_]\w{1,}' ||
 '[.,0-9,a-z,A-Z,_]\w{1,}'||
 '@\w{1,}[.,0-9,a-z,A-Z,_]\' ||
 'w{1,}[.,0-9,a-z,A-Z,_]\w{1,}[.,0-9,a-z,A-Z,_]\w{1,}$') then
 -- Perform valid transaction
ELSE
 -- Raise an error message

It is imperative that you do not allow users of your applications to see the Oracle error codes that are

returned by an error. Use proper exception handling (covered in Chapter 9) to ensure that you are
catching any possible exceptions and returning a vaguely descriptive error message to the user. It is not
wise to allow Oracle errors or detailed error messages to be displayed because they will most likely
provide a malicious user with valuable information for attacking your database.

Using bind variables, validating user input, and displaying user-friendly and appropriate error
messages can help ensure that your database is not attacked. It is never an enjoyable experience to
explain to your users that all usernames and passwords were compromised. Time is much better spent
securing your code than going back to clean up after a malicious attack.

C H A P T E R 9

187

Exceptions

Exceptions are a fundamental part of any well-written program. They are used to display user-friendly
error messages when an error is raised by an application, nondefault exception handling, and
sometimes recovery so that an application can continue. Surely you have seen your fair share of ORA-
XXXXX error messages. Although these messages are extremely useful to a developer for debugging and
correcting issues, they are certainly foreign to the average application user and can be downright
frightening to see.

Imagine that you are working with a significant number of updates via an application form, and
after you submit your 150th update, an Oracle error is displayed. Your first reaction would be of panic,
hoping that you haven’t just lost all of the work you had completed thus far. By adding exception
handling to an application, you can ensure that exceptions are handled in an orderly fashion so that no
work is lost. You can also create a nicer error message to let the user know all changes have been saved
up to this point so that sheer panic doesn’t set in when the exception is raised.

Exceptions can also be raised as a means to provide informative detail regarding processes that are
occurring within your application. They are not merely restricted to being used when Oracle encounters
an issue. You can raise your own exceptions as well when certain circumstances are encountered in your
application.

Whatever the case may be, exception handling should be present in any production-quality
application code. This chapter will cover some basics of how to use exception handling in your code.
Along the way, you will learn some key tips on how exception handling can make your life easier. In the
end, you should be fully armed to implement exception handling for your applications.

9-1. Trapping an Exception

Problem
A procedure in your application has the potential to cause an exception to be raised. Rather than let the
program exit and return control to the host machine, you want to perform some cleanup to ensure data
integrity, as well as display an informative error message.

Solution
Write an exception handler for your procedure so that the exception can be caught and you can perform
tasks that need to be completed and provide a more descriptive message. The following procedure is
used to obtain employee information based upon a primary key value or an e-mail address. Beginning
with the EXCEPTION keyword in the following example, an exception-handling block has been added to
the end of the procedure in order to handle any exceptions that may occur when no matching record is
found.

CHAPTER 9 EXCEPTIONS

188

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)
 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :id';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 WHEN INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('YOU MUST ENTER AN EMAIL ADDRESS INCLUDING ' ||
 'THE @ OR A POSITIVE INTEGER VALUE FOR THE ' ||
 'EMPLOYEE ID.');
END;

Here are the results of calling the procedure with various arguments:

 CHAPTER 9 EXCEPTIONS

189

SQL> EXEC OBTAIN_EMP_DETAIL(000);
THE INFORMATION YOU HAVE USED DOES NOT MATCH ANY EMPLOYEE RECORD

PL/SQL procedure successfully completed.

SQL> EXEC OBTAIN_EMP_DETAIL('TEST');
YOU MUST ENTER AN EMAIL ADDRESS INCLUDING THE @ OR A POSITIVE INTEGER VALUE FOR
THE EMPLOYEE ID.

PL/SQL procedure successfully completed.

SQL> EXEC OBTAIN_EMP_DETAIL(200);
Jennifer Whalen - JWHALEN

PL/SQL procedure successfully completed.

This procedure is essentially the same as the one demonstrated in Recipe 8-1. The difference is that

when an exception is raised, the control will go into the exception block. At that time, the code you place
within the exception block will determine the next step to take as opposed to simply raising an Oracle
error and returning control to the calling procedure, calling function, or host environment.

How It Works
To perform remedial actions when an exception is raised, you should always make sure to code an
exception handler if there is any possibility that an exception may be thrown. The sole purpose of an
exception handler is to catch exceptions when they are raised and handle the outcome in a controlled
fashion. There are two different types of exceptions that can be raised by a PL/SQL application:
internally defined and user defined. Oracle Database has a defined set of internal exceptions that can be
thrown by a PL/SQL application. Those exceptions are known as internally defined. It is also possible to
define your own exceptions, which are known as user defined.

An exception-handling block is structured like a CASE statement in that a series of exceptions is listed
followed by a separate set of statements to be executed for each outcome. The standard format for an
exception-handling block is as follows:

EXCEPTION
 WHEN name_of_exception THEN
 -- One or more statements

Exception blocks begin with the EXCEPTION keyword, followed by a series of WHEN..THEN clauses that

describe different possible exceptions along with the set of statements that should be executed if the
exception is caught. The exception name can be one of the Oracle internally defined exceptions, or it can
be the name of an exception that has been declared within your code. To learn more about declaring
exceptions, please see Recipe 9-3 in this chapter. In the solution to this recipe, the internally defined
NO_DATA_FOUND exception is raised if an unknown e-mail address is entered into the procedure because
there will be no rows returned from the query. When the exception block encounters the WHEN clause that
corresponds with NO_DATA_FOUND, the statements immediately following the THEN keyword are executed.
In this case, an error message is printed using the DBMS_OUTPUT package. However, in a real-world
application, this is where you will place any cleanup or error handling that should be done to help
maintain the integrity of the data accessed by your application.

An exception block can contain any number of WHEN..THEN clauses, and therefore, any number of
exceptions can each contain their own set of handler statements. Even if a simple message was to be

CHAPTER 9 EXCEPTIONS

190

displayed, as is the case with the solution to this recipe, a different and more descriptive error message
can be coded for each different exception that may possibly be raised. This situation is reflected in the
second exception handler contained within the solution because it returns a different error message
than the first.

As mentioned previously, Oracle contains a number of internally defined exceptions. Table 9-1
provides a list of the internally defined exceptions, along with a description of their usage.

Table 9-1. Oracle Internal Exceptions

Exception Code Description

ACCESS_INTO_NULL -6530 Values are assigned to an uninitialized object.

CASE_NOT_FOUND -6592 No matching choice is available within CASE statement, and no
ELSE clause has been defined.

COLLECTION_IS_NULL -6531 Program attempts to apply collection methods other than
EXISTS to varray or a nested table that has not yet been
initialized.

CURSOR_ALREADY_OPEN -6511 Program attempts to open a cursor that is already open.

DUP_VAL_ON_INDEX -1 Program attempts to store duplicate values in a unique index
column.

INVALID_CURSOR -1001 Program attempts to use a cursor operation that is allowed.

INVALID_NUMBER -1722 Conversion of string into number is incorrect because of the
string not being a number.

LOGIN_DEINIED -1017 Program attempts to log in to the database using an incorrect
user name and/or password.

NO_DATA_FOUND +100 SELECT statement returns no rows.

NOT_LOGGED_ON -1012 Program attempts to issue a database call without being
connected to the database.

PROGRAM_ERROR -6501 Internal problem exists.

ROWTYPE_MISMATCH -6504 Cursor variables are incompatible. A host cursor variable must
have a compatible return type that matches a PL/SQL cursor
variable.

SELF_IS_NULL -30625 Instance of object type is not initialized.

STORAGE_ERROR -6500 PL/SQL ran out of memory or was corrupted.

 CHAPTER 9 EXCEPTIONS

191

Exception Code Description

SUBSCRIPT_BEYOND_COUNT – 6533 Program references nested table or varray element using an
index number that goes beyond the number of elements
within the object.

SYS_INVALID_ROWID -1410 Conversion of character string into ROWID fails because
character string does not represent a valid row ID.

TIMEOUT_ON_RESOURCE -51 Oracle Database is waiting for resource, and timeout occurs.

TOO_MANY_ROWS -1422 Attempts to select more than one row using a SELECT INTO
statement.

VALUE_ERROR -6502 Program attempts to perform an invalid arithmetic,
conversion, or truncation operation.

ZERO_DIVIDE -1476 Program attempts to divide a number by zero.

An exception handler’s scope corresponds to its enclosing code block. They have the same scope as

a variable would have within a code block. If your code contains a nested code block, an exception
handler that is contained within the nested code block can only handle exceptions raised within that
code block. The outer code block can contain an exception handler that will handle exceptions for both
the outer code block and the nested code block. If an exception is raised within the nested code block
and there is no corresponding handler for an exception that has been raised within the nested code
block, then the exception is propagated to the outer code block to look for a corresponding handler
there. If no handler is found, then runtime will be passed to the procedure or function that called it or
the host system, which is what you do not want to have occur. The following code demonstrates an
example of using an exception handler within a nested code block:

DECLARE
 CURSOR emp_cur IS
 SELECT *
 FROM EMPLOYEES;

 emp_rec emp_cur%ROWTYPE;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' ||
 emp_rec.last_name);
 DECLARE
 emp_dept departments.department_name%TYPE;
 BEGIN
 SELECT department_name
 INTO emp_dept
 FROM departments
 WHERE department_id = emp_rec.department_id;
 DBMS_OUTPUT.PUT_LINE('Department: ' || emp_dept);
 EXCEPTION

CHAPTER 9 EXCEPTIONS

192

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('EXCEPTION IN INNER BLOCK');
 END;
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('EXCEPTION IN OUTER BLOCK');
END;

Multiple exceptions can be listed within the same exception handler if you want to execute the same

set of statements when either of them is raised. You can do this within the WHEN clause by including two
or more exception names and placing the OR keyword between them. Using this technique, if either of
the exceptions that are contained within the clause is raised, then the set of statements that follows will
be executed. Let’s take a look at an exception handler that contains two exceptions within the same
handler:

EXCEPTION
 WHEN NO_DATA_FOUND OR INVALID_EMAIL_ADDRESS THEN
 -- statements to execute
 WHEN OTHERS THEN
 -- statements to execute
END;

■ Note You cannot place the AND keyword in between exceptions because no two exceptions can be raised at the

same time.

It is easy to include basic exception handling in your application. Code an exception-handling block
at the end of each code block that may raise an exception. It is pertinent that you test your application
under various conditions to try to predict which possible exceptions may be raised; each of those
possibilities should be accounted for within the exception-handling block of your code.

9-2. Catching Unknown Exceptions

Problem
Some exceptions are being raised when executing one of your procedures and you want to ensure that
all unforeseen exceptions are handled using an exception handler.

Solution
Use an exception handler, and specify OTHERS for the exception name to catch all the exceptions that
have not been caught by previous handlers. In the following example, the same code from Recipe 9-1
has been modified to add an OTHERS exception handler:

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);

 CHAPTER 9 EXCEPTIONS

193

 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)
 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :id';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('AN UNEXPECTED ERROR HAS OCCURRED, PLEASE ' ||
 'TRY AGAIN');
END;

In this example, if an unexpected exception were to be raised, then the program control would

transfer to the statements immediately following the WHEN OTHERS THEN clause.

CHAPTER 9 EXCEPTIONS

194

■ Note In a real-world application, an exception should be manually reraised within the OTHERS handler. To learn

more about determining the exception that was raised, please see Recipe 9-4.

How It Works
You can use the OTHERS handler to catch all the exceptions that have not been previously handled by any
named exception handler. It is a good idea to include an OTHERS handler with any exception handler so
that any unknown exceptions can be handled reasonably by your application. However, OTHERS should
be used only to assist developers in finding application bugs rather than as a catchall for any exception.
The format for using the OTHERS handler is the same as it is with other named exceptions; the only
difference is that it should be the last handler to be coded in the exception handler. The following
pseudocode depicts a typical exception handler that includes an OTHERS handler:

EXCEPTION
 WHEN named_exception1 THEN
 -- perform statements
 WHEN named_exception2 THEN
 -- perform statements
 WHEN OTHERS THEN
 -- perform statements

WHEN TO USE THE OTHERS HANDLER

It is important to note that the OTHERS handler is not used to avoid handling expected exceptions properly.

Each exception that may possibly be raised should be handled within its own exception-handling block.
The OTHERS handler should be used only to catch those exceptions that are not expected. Most often, the

OTHERS handler is used to catch application bugs in order to assist a developer in finding and resolving

issues.

As stated, the OTHERS handler will catch any exception that has not yet been caught by another
handler. It is very important to code a separate handler for each type of named exception that may
occur. However, if you have one set of statements to run for any type of exception that may occur, then it
is reasonable to include only an OTHERS exception handler to catch exceptions that are unexpected. If no
named exceptions are handled and an exception handler includes only an OTHERS handler, then the
statements within that handler will be executed whenever any exception occurs within an application.

9-3. Creating and Raising Named Programmer-Defined Exceptions

Problem
You want to alert the users of your application when a specific event occurs. The event does not raise an
Oracle exception, but it is rather an application-specific exception. You want to associate this event with
a custom exception so that it can be raised whenever the event occurs.

 CHAPTER 9 EXCEPTIONS

195

Solution
Declare a named user-defined exception, and associate it with the event for which you are interested in
raising an exception. In the following example, a user-defined exception is declared and raised within a
code block. When the exception is raised, the application control is passed to the statements contained
within the exception handler for the named user exception.

CREATE OR REPLACE PROCEDURE salary_increase(emp_id IN NUMBER,
 pct_increase IN NUMBER) AS

 salary employees.salary%TYPE;
 max_salary jobs.max_salary%TYPE;
 INVALID_INCREASE EXCEPTION;

BEGIN

 SELECT salary, max_salary
 INTO salary, max_salary
 FROM employees, jobs
 WHERE employee_id = emp_id
 AND jobs.job_id = employees.employee_id;

 IF (salary + (salary * pct_increase)) <= max_salary THEN
 UPDATE employees
 SET salary = (salary + (salary * pct_increase))
 WHERE employee_id = emp_id;

 DBMS_OUTPUT.PUT_LINE('SUCCESSFUL SALARY INCREASE FOR EMPLOYEE #: ' ||
 emp_id ||
 '. NEW SALARY = ' || salary + (salary * pct_increase));

 ELSE
 RAISE INVALID_INCREASE;
 END IF;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('UNSUCCESSFUL INCREASE, NO EMPLOYEE RECORD FOUND ' ||
 'FOR THE GIVEN ID');

 WHEN INVALID_INCREASE THEN
 DBMS_OUTPUT.PUT_LINE('UNSUCCESSFUL INCREASE. YOU CANNOT INCREASE THE ' ||
 'EMPLOYEE SALARY BY ' || pct_increase ||
 'PERCENT...PLEASE ENTER ' ||
 'A SMALLER INCREASE AMOUNT TO TRY AGAIN');

 WHEN OTHERS THEN

CHAPTER 9 EXCEPTIONS

196

 DBMS_OUTPUT.PUT_LINE('UNSUCCESSFUL INCREASE. AN UNKNOWN ERROR HAS '||
 'OCCURRED, ' ||
 'PLEASE TRY AGAIN OR CONTACT ADMINISTRATOR' || pct_increase);

END;

As you can see from the code, the exception block can accept one or more handlers. The named

user exception is declared within the declaration section of the procedure, and the exception can be
raised anywhere within the containing block.

■ Note In a real-world application, an exception should be manually raised within the OTHERS handler. To learn

more about determining the exception that was raised, please see Recipe 9-4.

How It Works
A PL/SQL application can contain any number of custom exceptions. When a developer declares their
own exception, it is known as a user-defined exception. A user-defined exception must be declared
within the declaration section of a package, function, procedure, or anonymous code block. To declare
an exception, use the following:

exception_name EXCEPTION;

You can provide any name as long as it applies to the standard naming convention and is not the

same as an internally defined exception name. It is a coding convention to code exception names using
uppercase lettering, but lowercase would work as well since PL/SQL is not a case-sensitive language.

To raise your exception, type the RAISE keyword followed by the name of the exception that you
want to raise. When the code executes the RAISE statement, control is passed to the exception handler
that best matches the exception that was named in the statement. If no handler exists for the exception
that was raised, then control will be passed to the OTHERS handler, if it exists. In the worst-case scenario,
if there are not any exception handlers that match the name that was provided in the RAISE statement
and there has not been an OTHERS handler coded, then control will be passed back to the enclosing block,
the calling code, or the host environment.

The RAISE statement can also be used in a couple of other ways. It is possible to raise an exception
that has been declared within another package. To do so, fully qualify the name of the exception by
prefixing it with the package name. The RAISE statement can also be used stand-alone to reraise an
exception.

As seen in the solution to this recipe, catching a named user exception is exactly the same as
catching an internally defined exception. Code the WHEN..THEN clause, naming the exception that you
want to catch. When the exception is raised, any statements contained within that particular exception
handler will be executed.

 CHAPTER 9 EXCEPTIONS

197

9-4. Determining Which Error Occurred Inside the OTHERS Handler

Problem
Your code is continually failing via an exception, and the OTHERS handler is being invoked. You need to
determine the exact cause of the exception so that it can be repaired.

Solution
Code the OTHERS exception handler as indicated by Recipe 9-2, and use the SQLCODE and
DBMS_UTILITY.FORMAT_ERROR_STACK functions to return the Oracle error code and message text for the
exception that has been raised. The following example demonstrates the usage of these functions, along
with the procedure that was used in Recipe 9-3, for obtaining the error code and message when the
OTHERS handler is invoked.

CREATE OR replace PROCEDURE salary_increase(emp_id IN NUMBER,
 pct_increase IN NUMBER)
AS
 salary employees.salary%TYPE;
 max_salary jobs.max_salary%TYPE;
 invalid_increase EXCEPTION;
 error_number NUMBER;
 error_message VARCHAR2(1500);
BEGIN
 SELECT salary,
 max_salary
 INTO salary, max_salary
 FROM employees,
 jobs
 WHERE employee_id = emp_id
 AND jobs.job_id = employees.employee_id;

 IF (salary + (salary * pct_increase)) <= max_salary THEN
 UPDATE employees
 SET salary = (salary + (salary * pct_increase))
 WHERE employee_id = emp_id;

 dbms_output.Put_line('SUCCESSFUL SALARY INCREASE FOR EMPLOYEE #: '
 || emp_id
 || '. NEW SALARY = '
 || salary + (salary * pct_increase));
 ELSE
 RAISE invalid_increase;
 END IF;
EXCEPTION
 WHEN no_data_found THEN
 dbms_output.Put_line('UNSUCCESSFUL INCREASE, NO EMPLOYEE RECORD FOUND '
 || 'FOR THE '
 || 'GIVEN ID'); WHEN invalid_increase THEN
 dbms_output.Put_line('UNSUCCESSFUL INCREASE. YOU CANNOT INCREASE THE '
 || 'EMPLOYEE '

CHAPTER 9 EXCEPTIONS

198

 || 'SALARY BY '
 || pct_increase
 || ' PERCENT...PLEASE ENTER '
 || 'A SMALLER INCREASE AMOUNT TO TRY AGAIN');
WHEN OTHERS THEN
 error_number := SQLCODE;

 error_message := DBMS_UTILITY.FORMAT_ERROR_STACK;

 dbms_output.Put_line('UNSUCCESSFUL INCREASE. AN UNKNOWN ERROR HAS '
 || 'OCCURRED, '
 || 'PLEASE TRY AGAIN OR CONTACT ADMINISTRATOR'
 || ' Error #: '
 || error_number
 || ' - '
 || error_message);
END;

When this procedure is executed, the following error will be returned:

UNSUCCESSFUL INCREASE. AN UNKNOWN ERROR HAS OCCURRED, PLEASE TRY AGAIN OR CONTACT
ADMINISTRATOR Error #: -1722 - ORA-01722: invalid number

This example intentionally raises an error in order to demonstrate the functionality of these utilities.

A reference to the line number that raised the error may also be helpful. To learn more about writing an
exception handler that returns line numbers, please see Recipe 9-9.

How It Works
The SQLCODE and DBMS_UTILITY.FORMAT_ERROR_STACK functions provide the means to determine what
code and message had caused the last exception that was raised. The SQLCODE function will return the
Oracle error number for internal exceptions and +1 for a user-defined exception. The
DBMS_UTILITY.FORMAT_ERROR_STACK function will return the Oracle error message for any internal
exception that is raised, and it will contain the text User-Defined Exception for any named user
exception that is raised. A user-defined exception may receive a custom error number, as you will read
about in Recipe 9-9. In such cases, the SQLCODE function will return this custom error number if raised.

To use these functions, you must assign them to a variable because they cannot be called outright.
For instance, if you wanted to use the SQLCODE within a CASE statement, you would have to assign the
function to a variable first. Once that has been done, you could use the variable that was assigned the
SQLCODE in the statement.

Oracle includes DBMS_UTILITY.FORMAT_ERROR_STACK, which can be used to return the error message
associated with the current error. DBMS_UTILITY.FORMAT_ERROR_STACK can hold up to 1,899 characters, so
there is rarely a need to truncate the message it returns. SQLERRM is a similar function that can be used to
return the error message, but it only allows messages up to 512 bytes to be displayed. Oftentimes,
SQLERRM messages need to be truncated for display. Oracle recommends using
DBMS_UTILITY.FORMAT_ERROR_STACK over SQLERRM because this utility doesn’t have such a small message
limitation.

However, SQLERRM does have its place, because there are some benefits of using it. A handy feature of
SQLERRM is that you can pass an error number to it and retrieve the corresponding error message. Any
error number that is passed to SQLERRM should be negative; otherwise, you will receive the message User-

 CHAPTER 9 EXCEPTIONS

199

defined error. Table 9-2 displays the error number ranges and their corresponding messages using
SQLCODE and SQLERRM.

Table 9-2. SQLCODE Return Codes and Meanings

Code Description

Negative Oracle Error Number Internal Oracle exception

0 No exceptions raised

+1 User-defined exception

+100 NO_DATA_FOUND

-20000 to -20999 User-defined error with PRAGMA EXCEPTION_INIT

■ Note PRAGMA EXCEPTION_INIT is used to associate an Oracle error number with an exception name.

If you choose to use SQLERRM, the code is not much different from using
DBMS_UTILITY.FORMAT_ERROR_STACK, but you will probably need to include some code to truncate the
result. The next example demonstrates the same example that was used in the solution to this recipe, but
it uses SQLERRM instead of DBMS_UTILITY.FORMAT_ERROR_STACK.

CREATE OR replace PROCEDURE salary_increase(emp_id IN NUMBER,
 pct_increase IN NUMBER)
AS
 salary employees.salary%TYPE;
 max_salary jobs.max_salary%TYPE;
 invalid_increase EXCEPTION;
 error_number NUMBER;
 error_message VARCHAR2(1500);
BEGIN
 SELECT salary,
 max_salary
 INTO salary, max_salary
 FROM employees,
 jobs
 WHERE employee_id = emp_id
 AND jobs.job_id = employees.employee_id;

 IF (salary + (salary * pct_increase)) <= max_salary THEN
 UPDATE employees
 SET salary = (salary + (salary * pct_increase))
 WHERE employee_id = emp_id;

CHAPTER 9 EXCEPTIONS

200

 dbms_output.Put_line('SUCCESSFUL SALARY INCREASE FOR EMPLOYEE #: '
 || emp_id
 || '. NEW SALARY = '
 || salary + (salary * pct_increase));
 ELSE
 RAISE invalid_increase;
 END IF;
EXCEPTION
 WHEN no_data_found THEN
 dbms_output.Put_line('UNSUCCESSFUL INCREASE, NO EMPLOYEE RECORD FOUND '
 || 'FOR THE '
 || 'GIVEN ID'); WHEN invalid_increase THEN
 dbms_output.Put_line('UNSUCCESSFUL INCREASE. YOU CANNOT INCREASE THE '
 || 'EMPLOYEE '
 || 'SALARY BY '
 || pct_increase
 || ' PERCENT...PLEASE ENTER '
 || 'A SMALLER INCREASE AMOUNT TO TRY AGAIN');
WHEN OTHERS THEN
 error_number := SQLCODE;

 error_message := Substr(sqlerrm, 1, 150);

dbms_output.Put_line('UNSUCCESSFUL INCREASE. AN UNKNOWN ERROR HAS OCCURRED, '
 || 'PLEASE TRY AGAIN OR CONTACT ADMINISTRATOR'
 || ' Error #: '
 || error_number
 || ' - '
 || error_message);
END;

There are some other tools that can be used to further diagnose which errors are being raised and
even to see the entire stack trace. These tools are further explained within Recipe 9-9. By combining the
techniques learned in this recipe with those you will learn about in Recipe 9-9, you are sure to have a
better chance of diagnosing your application issues.

9-5. Raising User-Defined Exceptions Without an Exception Handler

Problem
Your application includes some error handling that is specific to your application. For instance, you
want to ensure that the input value for a procedure is in the valid format to be an e-mail address. Rather
than writing an exception handler for each user-defined exception, you want to simply raise the
exception inline and provide an error number as well.

Solution
This scenario is perfect for using the RAISE_APPLICATION_ERROR procedure. Test the e-mail address that is
passed into the procedure to ensure that it follows certain criteria. If it does not contain a specific

 CHAPTER 9 EXCEPTIONS

201

characteristic of a valid e-mail address, use the RAISE_APPLICATION_ERROR procedure to display an
exception message to the user. Here’s an example:

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_email IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

 BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_email LIKE '%@%' THEN
 temp_emp_info := substr(emp_email,0,instr(emp_email,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_email';
 ELSIF emp_email NOT LIKE '%.mycompany.com' THEN
 RAISE_APPLICATION_ERROR(-20001, 'Not a valid email address from ' ||
 'this company!');
 ELSE
 RAISE_APPLICATION_ERROR(-20002, 'Not a valid email address!');
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;

END;

As you can see, there is no exception handler in this example. When the conditions are met, an

exception is raised inline via RAISE_APPLICATION_EXCEPTION.

How It Works
The RAISE_APPLICATION_EXCEPTION procedure can associate an error number with an error message. The
format for calling the RAISE_APPLICATION_EXCEPTION procedure is as follows:

RAISE_APPLICATION_EXCEPTION(exception_number,
 exception_message[, retain_error_stack]);

where exception_number is a number within the range of -20000 to -20999, and exception_message is a
string of text that is equal to or less than 2KB in length. The optional retain_error_stack is a BOOLEAN

CHAPTER 9 EXCEPTIONS

202

value that tells Oracle whether this exception should be added to the existing error stack or whether the
error stack should be wiped clean and this exception should be placed into it. By default, the value is
FALSE, and all other exceptions are removed from the error stack, leaving this exception as the only one
in the stack.

When you invoke the procedure, the current block is halted immediately, and the exception is
raised. No further processing takes place within the current block, and control is passed to the program
that called the block or an enclosing block if the current block is nested. Therefore, if you need to
perform any exception handling, then it needs to take place prior to calling
RAISE_APPLICATION_EXCEPTION. There is no commit or rollback, so any updates or changes that have been
made will be retained if you decide to issue a commit. Any OUT and IN OUT values, assuming you are in a
procedure or a function, will be reverted. This is important to keep in mind, because it will help you
determine whether to use an exception handler or issue a call to RAISE_APPLICATION_ERROR.

When calling RAISE_APPLICATION_EXCEPTION, you pass an error number along with an associated
exception message. Oracle sets aside the range of numbers from -20000 to -20999 for use by its
customers for the purpose of declaring exceptions. Be sure to use a number within this range, or Oracle
will raise its own exception to let you know that you are out of line and using one of its proprietary error
numbers!

■ Note There are some numbers within that range that are still used by Oracle-specific exceptions. Passing a

TRUE value as the last argument in a call to RAISE_APPLICATION_EXCEPTION will retain any existing errors in the

error stack. Passing TRUE is a good idea for the purposes of debugging so that the stack trace can be used to help

find the code that is raising the exception. Otherwise, the exception stack is cleared.

One may choose to create a function or procedure that has the sole purpose of calling
RAISE_APPLICATION_EXCEPTION to raise an exception and associate an error number with an exception
message. This technique can become quite useful if you are interested in using a custom error number
for your exceptions, but you still need to perform proper exception handling when errors occur. You
could use the OTHERS exception handler to call the function or procedure that uses
RAISE_APPLICATION_EXCEPTION, passing the error number and a proper exception message.

9-6. Redirecting Control After an Exception Is Raised

Problem
After an exception is raised within an application, usually the statements within the exception handler
are executed, and then control goes to the next statement in the calling program or outside the current
code block. Rather than printing an error message and exiting your code block after an exception, you
want to perform some further activity. For instance, let’s say you are interested in logging the exception
in a database table. You have a procedure for adding entries to the log table, and you want to make use
of that procedure.

 CHAPTER 9 EXCEPTIONS

203

Solution
Invoke the procedure from within the exception handler. When the exception is raised, program control
will be passed to the appropriate handler. The handler itself can provide an exception message for the
user, but it will also call the procedure that is to be used for logging the exception in the database. The
following example demonstrates this technique:

CREATE OR REPLACE PROCEDURE log_error_messages(error_code IN NUMBER,
 message IN VARCHAR2) AS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 DBMS_OUTPUT.PUT_LINE(message);
 DBMS_OUTPUT.PUT_LINE('WRITING ERROR MESSAGE TO DATABASE');
END;

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

 BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)
 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :id';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE

CHAPTER 9 EXCEPTIONS

204

 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 log_error_messages(SQLCODE, DBMS_UTILITY.FORMAT_ERROR_STACK);

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('AN UNEXPECTED ERROR HAS OCCURRED, PLEASE ' ||
 'TRY AGAIN');
 log_error_messages(SQLCODE, DBMS_UTILITY.FORMAT_ERROR_STACK);
 END;

In this scenario, the log_error_messages procedure would be called from within each of the

exception handlers. Since it is an autonomous transaction, the log_error_messages procedure will
execute without affecting the calling procedure. This ensures that no issues will arise if
log_error_messages were to raise an exception. Control of the application would be passed to this
procedure for the processing, and then the program would exit.

How It Works
It is possible to redirect control of your code after an exception has been raised using various
techniques. After an exception is raised and control is redirected to the handler, the statements within
the handler are executed, and then that program ends. If the code block that contains the exception
handler is contained within enclosing code block, control will be passed to the next statement within the
enclosing control block. Otherwise, the program will exit after statements are executed.

To execute a particular action or series of processes after an exception has been raised, it is a useful
technique to call a stored procedure or function from within the exception handler. In the solution to
this recipe, a logging procedure is called that will insert a row into the logging table after each exception
is raised. This allows the program control to be passed to the procedure or function that is called, and
when that body of code has completed execution, control is passed back to the exception handler. This
is a very useful technique for logging exceptions but can also be used for various other tasks such as
sending an e-mail alert or performing some database cleanup.

9-7. Raising Exceptions and Continuing Processing

Problem
The application you are coding requires a series of INSERT, UPDATE, and DELETE statements to be called.
You want to add proper exception handling to your code and also ensure that processing continues and
all of the statements are executed even if an exception is raised.

Solution
Enclose each statement within its own code block, and provide an exception handler for each of the
blocks. When an exception is raised within one of the nested blocks, then control will be passed back to

 CHAPTER 9 EXCEPTIONS

205

the main code block, and execution will continue. This style of coding is displayed in the following
example:

CREATE OR REPLACE PROCEDURE delete_employee (in_emp_id IN NUMBER) AS
 BEGIN
 -- ENTER INITIAL NESTED CODE BLOCK TO PERFORM DELETE
 BEGIN
 -- DELETE EMP
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- perform statements
 END;

 -- ENTER SECOND NESTED CODE BLOCK TO PERFORM LOG ENTRY
 BEGIN
 -- LOG DELETION OF EMP
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- perform statements
 END;
EXCEPTION WHEN OTHERS THEN
 -- perform statements
END;

As this code stands, no exception will go on to become an unhanded exception because the

outermost code block contains an exception handler using the OTHERS exception name. Every nested
code block contains a handler, so every exception that is encountered in this application will be caught.

How It Works
Scope plays an important role when designing your application’s exception-handling system. When
doing so, you should think of your application and determine whether portions of the code need to be
executed regardless of any exception being raised. If this is the case, then you will need to provide proper
exception handling and still ensure that the essential code is executed each run.

The scope of an exception pertains to the code block in which the exception is declared. Once an
exception has been encountered, program control halts immediately and is passed to the exception
handler for the current block. If there is not an exception handler in the current code block or if no
handler matches the exception that was raised, then control passes to the calling program or outer
control block. Control is immediately passed to the exception handler of that program. If no exception
handler exists or matches the exception being raised, then the execution of that block halts, and the
exception is raised to the next calling program or outer code block, and so on.

This pattern can be followed any number of times. That is why the technique used in the solution to
this recipe works well. There is one main code block that embodies two nested code blocks. Each of the
blocks contains essential statements that need to be run. If an exception is raised within the DELETE
block, then program control is passed back to its outer code block, and processing continues. In this
case, both essential statements will always be executed, even if exceptions are raised.

CHAPTER 9 EXCEPTIONS

206

9-8. Associating Error Numbers with Exceptions That Have No Name

Problem
You want to associate an error number to those errors that do not have predefined names.

Solution
Make use of PRAGMA EXCEPTION_INIT to tell the compiler to associate an Oracle error number with an
exception name. This will allow the use of an easy-to-identify name rather than an obscure error
number when working with the exception. The example in this recipe shows how an error number can
be associated with an exception name and how the exception can later be raised.

CREATE OR REPLACE FUNCTION calculate_salary_hours(salary IN NUMBER,
 hours IN NUMBER DEFAULT 1)
RETURN NUMBER AS
BEGIN
 RETURN salary/hours;
END;

DECLARE
 DIVISOR_IS_ZERO EXCEPTION;
 PRAGMA EXCEPTION_INIT(DIVISOR_IS_ZERO, -1476);
 per_hour NUMBER;
BEGIN
 SELECT calculate_salary_hours(0,0)
 INTO per_hour
 FROM DUAL;
EXCEPTION WHEN DIVISOR_IS_ZERO THEN
 DBMS_OUTPUT.PUT_LINE('You cannot pass a zero for the number of hours');
END;

The exception declared within this example is associated with the ORA-01476 error code. When a

divide-by-zero exception occurs, then the handler is executed.

How It Works
PRAGMA EXCEPTION_INIT allows an error number to be associated with an error name. Thus, it provides an
easy way to handle those exceptions that are available only by default via an error number. It is much
easier to identify an exception by name rather than by number, especially when you have been away
from the code base for some length of time.

The PRAGMA EXCEPTION_INIT must be declared within the declaration section of your code. The
exception that is to be associated with the error number must be declared prior to the PRAGMA
declaration. The format for using PRAGMA EXCEPTION_INIT is as follows:

DECLARE
 exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT(exception_name, <<exception_code>>);
BEGIN

 CHAPTER 9 EXCEPTIONS

207

 -- Perform statements
EXCEPTION
 WHEN exception_name THEN
 -- Perform error handling
END;

The exception_name in this pseudocode refers to the name of the exception you are declaring. The

<<exception_code>> is the number of the ORA-xxxxx error that you are associating with the exception. In
the solution to this recipe, ORA-01476 is associated with the exception. That exception in particular
denotes divisor is equal to zero. When this exception is raised, it is easier to identify the cause of the
error via the DIVISOR_IS_ZERO identifier than by the -01476 code.

Whenever possible, it is essential to provide an easy means of identification for portions of code that
may be difficult to understand. Exception numbers by themselves are not easily identifiable unless you
see the exception often enough. Even then, an exception handler with the number -01476 in it seems
obscure. In this case, it is always best to associate a more common name to the exception so that the
code can instantly have meaning to someone who is unfamiliar with the code or to you when you need
to maintain the code for years to come.

9-9. Tracing an Exception to Its Origin

Problem
Your application continues to raise an exception that is being caught with the OTHERS handler. You’ve
used SQLCODE and DBMS_UTILITY.FORMAT_ERROR_STACK to help you find the cause of the exception but are
still unable to do so.

Solution
Use the stack trace for the exception to trace the error back to its origination. In particular, use
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE and DBMS_UTILITY.FORMAT_CALL_TRACE to help you find the cause
of the exception. The following solution demonstrates the use of FORMAT_ERROR_BACKTRACE:

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

 BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)

CHAPTER 9 EXCEPTIONS

208

 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :id';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('AN UNEXPECTED ERROR HAS OCCURRED, PLEASE ' ||
 'TRY AGAIN');
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
 END;

Here are the results when calling within invalid argument information:

SQL> exec obtain_emp_detail('junea@');
THE INFORMATION YOU HAVE USED DOES NOT MATCH ANY EMPLOYEE RECORD
ORA-06512: at "OBTAIN_EMP_DETAIL", line 32

PL/SQL procedure successfully completed.

As you can see, the exact line number that caused the exception to be raised is displayed. This is

especially useful if you use a development environment that includes line numbering for your source
code. If not, then you can certainly count out the line numbers manually.

Similarly, DBMS_UTILITY.FORMAT_CALL_STACK lists the object number, line, and object where the issue
had occurred. The following example uses the same procedure as the previous example, but this time
DBMS_UTILITY.FORMAT_CALL_STACK is used in the exception handler:

 CHAPTER 9 EXCEPTIONS

209

CREATE OR REPLACE PROCEDURE obtain_emp_detail(emp_info IN VARCHAR2) IS
 emp_qry VARCHAR2(500);
 emp_first employees.first_name%TYPE;
 emp_last employees.last_name%TYPE;
 email employees.email%TYPE;

 valid_id_count NUMBER := 0;
 valid_flag BOOLEAN := TRUE;
 temp_emp_info VARCHAR2(50);

 BEGIN
 emp_qry := 'SELECT FIRST_NAME, LAST_NAME, EMAIL FROM EMPLOYEES ';
 IF emp_info LIKE '%@%' THEN
 temp_emp_info := substr(emp_info,0,instr(emp_info,'@')-1);
 emp_qry := emp_qry || 'WHERE EMAIL = :emp_info';
 ELSE
 SELECT COUNT(*)
 INTO valid_id_count
 FROM employees
 WHERE employee_id = emp_info;

 IF valid_id_count > 0 THEN
 temp_emp_info := emp_info;
 emp_qry := emp_qry || 'WHERE EMPLOYEE_ID = :id';
 ELSE
 valid_flag := FALSE;
 END IF;
 END IF;

 IF valid_flag = TRUE THEN
 EXECUTE IMMEDIATE emp_qry
 INTO emp_first, emp_last, email
 USING temp_emp_info;

 DBMS_OUTPUT.PUT_LINE(emp_first || ' ' || emp_last || ' - ' || email);
 ELSE
 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('THE INFORMATION YOU HAVE USED DOES ' ||
 'NOT MATCH ANY EMPLOYEE RECORD');
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_CALL_STACK);

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('AN UNEXPECTED ERROR HAS OCCURRED, PLEASE ' ||
 'TRY AGAIN');
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_CALL_STACK);

CHAPTER 9 EXCEPTIONS

210

 END;

Here are the results when calling within invalid argument information:

SQL> exec obtain_emp_detail('june@');
THE INFORMATION YOU HAVE USED DOES NOT MATCH ANY EMPLOYEE RECORD
----- PL/SQL Call Stack -----
 object line object
 handle number
name
24DD3280 47 procedure OBTAIN_EMP_DETAIL
273AA66C 1
anonymous block

PL/SQL procedure successfully completed.

Each of the two utilities demonstrated in this solution serves an explicit purpose—to assist you in
finding the cause of exceptions in your applications.

How It Works
Oracle provides a few different utilities to help diagnose and repair issues with code. The utilities
discussed in this recipe provide feedback regarding exceptions that have been raised within application
code. DBMS_UTILITY.FORMAT_ERROR_BACKTRACE is used to display the list of lines that goes back to the point
at which your application fails. This utility was added in Oracle Database 10g. Its ability to identify the
exact line number where the code has failed can save the time of reading through each line to look for
the errors. Using this information along with the Oracle exception that is raised should give you enough
insight to determine the exact cause of the problem.

The result from DBMS_UTILITY.FORMAT_ERROR_BACKTRACE can be assigned to a variable since it is a
function. Most likely a procedure will be used to log the exceptions so that they can be reviewed at a later
time. Such a procedure could accept the variable containing the result from
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE as input.

The DBMS_UTILITY.FORMAT_CALL_STACK function is used to print out a formatted string of the
execution call stack or the sequence of calls for your application. It displays the different objects used,
along with line numbers from which calls were made. It can be very useful for pinpointing those errors
that you are having trouble resolving. It can also be useful for obtaining information regarding the
execution order of your application. If you are unsure of exactly what order processes are being called,
this function will give you that information.

Using a combination of these utilities when debugging and developing your code is a good practice.
You may find it useful to create helper functions that contain calls to these utilities so that you can easily
log all stack traces into a database table or a file for later viewing. These can be of utmost importance
when debugging issues or evaluating application execution.

 CHAPTER 9 EXCEPTIONS

211

9-10. Displaying PL/SQL Compiler Warnings

Problem
You are interested in making your code more robust by ensuring that no issues will crop up as time goes
by and the code evolves. You want to have the PL/SQL compiler alert you of possible issues with your
code.

Solution
Use PL/SQL compile-time warnings to alert you of possible issues with your code. Enable warnings for
your current session by issuing the proper ALTER SESSION statements or by using the DBMS_WARNING
package to do so. This solution will demonstrate each of these techniques to help you decide which will
work best for your debugging purposes.

First let’s take a look at using ALTER SESSION to enable and configure warnings for your
environment. This technique can be very useful when you want to enable warnings for an entire session.
The following example shows how to enable warnings and how to display them given a short code block:

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:ALL';

CREATE OR REPLACE FUNCTION calculate_salary_hours(salary IN NUMBER,
 hours IN NUMBER DEFAULT 1)
RETURN NUMBER AS
BEGIN
 RETURN salary/hours;
END;

SHOW ERRORS;

Here are the results from running create or replace function with all warnings enabled:

Errors for FUNCTION CALCULATE_SALARY_HOURS:

LINE/COL
--
ERROR
--
1/1
PLW-05018: unit CALCULATE_SALARY_HOURS omitted optional AUTHID clause;
 default value DEFINER used

Next, let’s look at the DBMS_WARNINGS package. Use of this technique is more helpful if you are using a

development environment such as PL/SQL Developer that compiles your code for you. The following is
an example of performing the same CREATE OR REPLACE FUNCTION as earlier, but this time using
DBMS_WARNINGS:

SQL> CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('ENABLE:ALL','SESSION');

Call completed.

CHAPTER 9 EXCEPTIONS

212

SQL> CREATE OR REPLACE FUNCTION calculate_salary_hours(salary IN NUMBER,
 hours IN NUMBER DEFAULT 1)
RETURN NUMBER AS
BEGIN
 RETURN salary/hours;
END;
/ 2 3 4 5 6 7

SP2-0806: Function created with compilation warnings

SQL> SHOW ERRORS;
Errors for FUNCTION CALCULATE_SALARY_HOURS:

LINE/COL
--
ERROR
--
1/1
PLW-05018: unit CALCULATE_SALARY_HOURS omitted optional AUTHID clause; default v
alue DEFINER used

Both techniques provide similar results, but one can be set at the database level and the other can

be more useful for use in a development environment.

How It Works
Learning about warnings against your code can help you solidify your code and repair it so that it can
become more robust when it is used in a production environment. Although PL/SQL warnings will not
prevent the code from compiling and executing, they can certainly provide good insight to inform you of
places in your code that could possibly incur issues at a later time. As you have learned from the solution
to this recipe, there are two techniques that can be used to enable warnings for your application. Those
are the use of ALTER SESSION statements and the DBMS_WARNINGS package. Both are valid techniques for
enabling and disabling warnings, but each has its own set of strong points and drawbacks.

The PLSQL_WARNINGS compilation parameter must be used to enable or disable warnings within a
session. By setting it, you can control the types of warnings that are displayed, along with how much
information is displayed and even how it is displayed. This parameter can be set using the ALTER SESSION
statement. The format for setting this parameter using ALTER SESSION is as follows:

ALTER SESSION SET PLSQL_WARNINGS = "[ENABLE/DISABLE:PARAMETER]"

The PLSQL_WARNINGS compilation parameter accepts a number of different parameters that each tell

the compiler what types of warnings to display and what to ignore. There are three different categories of
warnings that can be used. Table 9-3 shows the different types of warnings along with their descriptions.

 CHAPTER 9 EXCEPTIONS

213

Table 9-3. Warning Categories

Category Description

PERFORMANCE May hinder application performance

INFORMATIONAL May complicate application maintenance but contains no immediate
issues

SECURE May cause unexpected or incorrect results

ALL Includes all the categories

The DBMS_WARNINGS package works in a similar fashion: it accepts the same arguments as the

PLSQL_WARNINGS parameter. The difference is that you can control when the warnings are enabled or
disabled by placing the call to the package in locations that you choose. This does not matter much
when working via SQL*Plus, but if you are using a development environment such as Oracle SQL
Developer, then DBMS_WARNINGS must be used. The format for calling this procedure is as follows:

CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('warning_category:value','scope');

The categories are the same as PLSQL_WARNINGS, as are the values of the categories. The scope determines
whether the warnings will be used for the duration of the session or for all sessions. There are various
other options that can be used with the DBMS_WARNINGS package. To learn more about these options,
please see the Oracle Database 11g documentation.

C H A P T E R 10

215

PL/SQL Collections and Records

Collections are single-dimensional arrays of data all with the same datatype and are accessed by an
index; usually the index is a number, but it can be a string. Collections indexed by strings are commonly
known as hash arrays.

Records are groups of related data, each with its own field name and datatype, similar to tables
stored in the database. The record data structure in PL/SQL allows you to manipulate data at the field or
record level. PL/SQL provides an easy method to define a record’s structure based on a database table’s
structure or a cursor. Combining records and collections provide a powerful programming advantage
described in the following recipes.

10-1. Creating and Accessing a VARRAY

Problem
You have a small, static list of elements that you initialize once and that would benefit from using in a
loop body.

Solution
Place the elements into a varray (or varying array). Once initialized, a varray may be referenced by its
index. Begin by declaring a datatype of varray with a fixed number of elements, and then declare the
datatype of the elements. Next, declare the variable that will hold the data using the newly defined type.
For example, the following code creates a varying array to hold the abbreviations for the days of the
week:

DECLARE

TYPE dow_type IS VARRAY(7) OF VARCHAR2(3);
dow dow_type := dow_type ('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat');

BEGIN

 FOR i IN 1..dow.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE (dow(i));
 END LOOP;

END;

Results

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

216

Sun
Mon
Tue
Wed
Thu
Fri
Sat

How It Works
The type statement dow_type defines a data structure to store seven instances of VARCHAR2(3). This is
sufficient space to hold the abbreviations of the seven days of the week. The dow variable is defined as a
VARRAY of the dow_type defined in the previous line. That definition invokes a built-in constructor
method to initialize values for each of the elements in the VARRAY.

The FOR .. LOOP traverses the dow variable starting at the first element and ending with the last. The
COUNT method returns the number of elements defined in a collection; in this recipe, there are seven
elements in the VARRAY, so the LOOP increments from one to seven. The DBMS_OUTPUT.PUT_LINE statement
displays its value.

A VARRAY is best used when you know the size the array and it will not likely change. The VARRAY
construct also allows you to initialize its values in the declaration section.

10-2. Creating and Accessing an Indexed Table

Problem
You need to store a group of numbers for later processing in another procedure.

Solution
Create an indexed table using an integer index to reference the elements. For example, this recipe loads
values into an indexed table of numbers.

DECLARE

TYPE num_type IS TABLE OF number INDEX BY BINARY_INTEGER;
nums num_type;
total number;

BEGIN

 nums(1) := 127.56;
 nums(2) := 56.79;
 nums(3) := 295.34;

 -- call subroutine to process numbers;
 -- total := total_table (nums);
END;

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

217

How It Works
PL/SQL tables are indexed collections of data of the same type. The datatype can be any of the built-in
datatypes provided by PL/SQL; in this example, the datatype is a number. Here are some things to note
about the example:

• The TYPE statement declares a TABLE of numbers.

• The INDEX BY clause defines how the array is accessed, in this case by an INTEGER.

• The array is populated by assigning values to specific indexes.
Because the TABLE is INDEXED BY an INTEGER, there is no predefined limit on the index value, other

than those imposed by Oracle, which is -2
31

 – 2
31

. Indexed tables are best suited for collections where the
number of elements stored is not known until runtime.

This recipe is an example of a TABLE indexed by an INTEGER. PL/SQL provides for tables indexed by
strings as well. See Recipe 10-5 for an example.

10-3. Creating Simple Records

Problem
You need a PL/SQL data structure to group related employee data to make manipulating the group
easier.

Solution
Define a record structure of the related employee data, and then create a variable to hold the record
structure. In this example, a simple RECORD structure is defined and initialized.

DECLARE

TYPE rec_type IS RECORD (
 last_name varchar2(25),
 department varchar2(30),
 salary number);
rec rec_type;

begin

 rec.last_name := 'Juno';
 rec.department := 'IT';
 rec.salary := '5000';

END;

How It Works
Record structures are created in PL/SQL by using the TYPE statement along with a RECORD structure
format. The fields defined in the record structure can be, and often are, of different datatypes. Record
structures use dot notation to access individual fields. Once defined, the rec_type record structure in the
solution can be used throughout the code to create as many instantiations of data structures as needed.

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

218

10-4. Creating and Accessing Record Collections

Problem
You need to load records from a database table or view into a simple data structure that would benefit
from use in a loop body or to pass as a parameter to another function or procedure. You want to act
upon sets of records as a single unit.

Solution
Use a TYPE to define a TABLE based on the database table structure. The following example declares a
cursor and then uses it to declare the table of records. The result is a variable named recs that holds the
data fetched by the cursor.

DECLARE

CURSOR driver IS
SELECT *
FROM employees;

TYPE emp_type IS TABLE OF driver%ROWTYPE INDEX BY BINARY_INTEGER;
recs emp_type;
total number := 0.0;

BEGIN

 OPEN DRIVER;
 FETCH DRIVER BULK COLLECT INTO recs;
 CLOSE DRIVER;

 DBMS_OUTPUT.PUT_LINE (recs.COUNT || ' records found');

 FOR i in 1..recs.COUNT LOOP
 total := total + recs(i).salary;
 END LOOP;

END;

When you execute this block of code, you will see a message such as the following:

103 records found

How It Works
The TYPE statement defines a data structure using the attributes (columns) of the employees table as
elements within the structure. The TABLE OF clause defines multiple instances of the record structure.
The INDEX BY clause defines the index method, in this case an integer. Think of this structure as a
spreadsheet with the rows being separate records from the database and the columns being the
attributes (fields) in the database. The recipe works whether your cursor selects all the fields (SELECT *)
or selects just a subset of fields from the table.

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

219

The BULK COLLECT portion of the fetch statement is more efficient than looping through the data in a
standard cursor loop because PL/SQL switches control to the database just once to retrieve the data as
opposed to switching to the database for each record retrieved in a cursor FOR .. LOOP. In a BULK
COLLECT, all records meeting the query condition are retrieved and stored in the data structure in a single
operation. Once the records are retrieved, processing may occur in a standard FOR .. standard FOR ..
LOOP.

10-5. Creating and Accessing Hash Array Collections

Problem
You want to use a single cursor to query employee data and sum the salaries across departments.

Solution
You can use two cursors—one to select all employees and the other to sum the salary grouping by
department. However, you can more easily and efficiently accomplish your task by using one cursor and
a hashed collection. Define your cursor to select employee data, joined with the department table. Use a
hash array collection to total by department by using the INDEX BY option to index your collection based
on the department name rather than an integer. The following code example illustrates this more
efficient approach:

DECLARE

CURSOR driver IS
SELECT ee.employee_id, ee.first_name, ee.last_name, ee.salary, d.department_name
FROM departments d,
 employees ee
WHERE d.department_id = ee.department_id;

TYPE total_type IS TABLE OF number INDEX BY departments.department_name%TYPE;
totals total_type;

dept departments.department_name%TYPE;

BEGIN

 FOR rec IN driver LOOP
 -- process paycheck
 if NOT totals.EXISTS(rec.department_name) then -- create element in the array
 totals(rec.department_name) := 0; -- initialize to zero
 end if;

 totals(rec.department_name) := totals(rec.department_name) + nvl (rec.salary, 0);
 END LOOP;

 dept := totals.FIRST;
 LOOP
 EXIT WHEN dept IS NULL;
 DBMS_OUTPUT.PUT_LINE (to_char (totals(dept), '999,999.00') || ' ' || dept);

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

220

 dept := totals.NEXT(dept);
 END LOOP;

END;

When you execute this block of code, you will see the following results:

20,310.00 Accounting
58,720.00 Executive
51,600.00 Finance
6,500.00 Human Resources
19,000.00 Marketing
2,345.34 Payroll
10,000.00 Public Relations
304,500.00 Sales
156,400.00 Shipping
35,295.00 Web Developments

How It Works
The TOTAL_TYPES PL/SQL type is defined as a collection of numbers that is indexed by the department
name. Indexing by department name gives the advantage of automatically sorting the results by
department name.

As new elements are created, using the EXISTS method, the index keys are automatically sorted by
PL/SQL. The totals are accumulated by department name as opposed to a numerical index, such as
department ID, which may not be sequential. This approach has the added advantage of not requiring a
separate collection for the department names.

Once the employee paychecks are processed, the dept variable is initialized with the first
department name from the totals array using the FIRST method. In this example, the first department is
accounting. A loop is required to process the remaining records. The NEXT method is used to find the
next department name—in alphabetical order—and this process repeats until all departments are
displayed.

10-6. Creating and Accessing Complex Collections

Problem
You need a routine to load managers and their corresponding employees from the database and store
them in one data structure. The data must be loaded in a manner such that direct reports are associated
with their manager. In addition, the number of direct reports for any given manager varies, so your
structure to hold the manager/employee relationships must handle any number of subordinates.

Solution
Combine records and collections to define one data structure capable of storing all the data. PL/SQL
allows you to use data structures you create via the type statement as datatypes within other collections.
Once your data structures are defined, use dot notation to distinguish attributes within the collections.
Use the structure’s index to reference items within the table. For example:

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

221

SET SERVEROUT ON SIZE 1000000

DECLARE

TYPE person_type IS RECORD (
 employee_id employees.employee_id%TYPE,
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE);

 -- a collection of people
TYPE direct_reports_type IS TABLE OF person_type INDEX BY BINARY_INTEGER;

 -- the main record definition, which contains a collection of records
TYPE rec_type IS RECORD (
 mgr person_type,
 emps direct_reports_type);

TYPE recs_type IS TABLE OF rec_type INDEX BY BINARY_INTEGER;
recs recs_type;

CURSOR mgr_cursor IS -- finds all managers
SELECT employee_id, first_name, last_name
FROM employees
WHERE employee_id IN
 (SELECT distinct manager_id
 FROM employees)
ORDER BY last_name, first_name;

CURSOR emp_cursor (mgr_id integer) IS -- finds all direct reports for a manager
SELECT employee_id, first_name, last_name
FROM employees
WHERE manager_id = mgr_id
ORDER BY last_name, first_name;

 -- temporary collection of records to hold the managers.
TYPE mgr_recs_type IS TABLE OF emp_cursor%ROWTYPE
 INDEX BY BINARY_INTEGER;
mgr_recs mgr_recs_type;

BEGIN

 OPEN mgr_cursor;
 FETCH mgr_cursor BULK COLLECT INTO mgr_recs;
 CLOSE mgr_cursor;

 FOR i IN 1..mgr_recs.COUNT LOOP
 recs(i).mgr := mgr_recs(i); -- move the manager record into the final structure

 -- moves direct reports directly into the final structure
 OPEN emp_cursor (recs(i).mgr.employee_id);
 FETCH emp_cursor BULK COLLECT INTO recs(i).emps;
 CLOSE emp_cursor;

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

222

 END LOOP;

 -- traverse the data structure to display the manager and direct reports
 -- note the use of dot notation within the data structure
 FOR i IN 1..recs.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE ('Manager: ' || recs(i).mgr.last_name);
 FOR j IN 1..recs(i).emps.count LOOP
 DBMS_OUTPUT.PUT_LINE ('*** Employee: ' || recs(i).emps(j).last_name);
 END LOOP;
 END LOOP;

END;

Executing this code block produces the following results:

Manager: Cambrault
*** Employee: Bates
*** Employee: Bloom
*** Employee: Fox
*** Employee: Kumar
*** Employee: Ozer
*** Employee: Smith
… <<snip>>
Manager: Zlotkey
*** Employee: Abel
*** Employee: Grant
*** Employee: Hutton
*** Employee: Johnson
*** Employee: Livingston
*** Employee: Taylor

How It Works
Combining records with collections is one of the most powerful techniques for defining data structures
in PL/SQL. It allows you to logically group common data, process large amounts of data efficiently, and
seamlessly pass data between procedures and functions.

The data structure contains a collection of managers; each manager contains a collection of direct
reports. Managers and direct reports are both person_type. Once your complex structure is defined, you
can use the BULK COLLECT feature to quickly fetch data from the database and load it into the structure.

The BULK COLLECT of the MGR_CURSOR selects all persons who are managers at once and then loads
them into the temporary structure MGR_RECS. Now that you have retrieved the records, it is easy to move
them into your final data structure. Looping through the manager records allows you to move the entire
data record for each manager via the RECS(I).MGR := MGR_RECS(I); statement. This statement moves
every element (field) from the MGR_RECS into the RECS structure.

The EMP_CURSOR uses the managers’ ID to fetch the managers’ direct reports. The cursor is opened by
passing the managers’ ID, and then another BULK COLLECT is used to directly store the fetched data into
the data structure; no temporary data structure is needed because the structure of the fetched data
exactly matches the target data structure.

Now that the data is stored in the data structure, it can be passed to another routine for processing.
Grouping large sets of related data is an efficient method for exchanging data between routines. This

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

223

helps separate data retrieval routines from business processing routines. It’s a very powerful feature in
PL/SQL, as you’ll see in the next recipe.

10-7. Passing a Collection As a Parameter

Problem
You want to pass a collection as a parameter to a procedure or function. For example, you have a data
structure that contains employee data, and you need to pass the data to a routine that prints employee
paychecks.

Solution
Create a collection of employee records to hold all employee data, and then pass the data to the
subroutine to process the paychecks. The TYPE statement defining the data structure must be visible to
the called procedure; therefore, it must be defined globally, prior to defining any procedure or function
that uses it.

In this example, employee data is fetched from the database into a collection and then passed to a
subroutine for processing.

set serverout on size 1000000

DECLARE

CURSOR driver IS
SELECT employee_id, first_name, last_name, salary
FROM employees
ORDER BY last_name, first_name;

TYPE emps_type IS TABLE OF driver%ROWTYPE;
recs emps_type;

 PROCEDURE print_paycheck (emp_recs emps_type) IS

 BEGIN

 FOR i IN 1..emp_recs.COUNT LOOP
 DBMS_OUTPUT.PUT ('Pay to the order of: ');
 DBMS_OUTPUT.PUT (emp_recs(i).first_name || ' ' || emp_recs(i).last_name);
 DBMS_OUTPUT.PUT_LINE (' $' || to_char (emp_recs(i).salary, 'FM999,990.00'));
 END LOOP;

 END;

BEGIN

 OPEN driver;
 FETCH driver BULK COLLECT INTO recs;
 CLOSE driver;

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

224

 print_paycheck (recs);

END;

Results

Pay to the order of: Ellen Abel $11,000.00
Pay to the order of: Sundar Ande $6,400.00
Pay to the order of: Mozhe Atkinson $2,800.00
… <<snip>>
Pay to the order of: Alana Walsh $3,100.00
Pay to the order of: Matthew Weiss $8,000.00
Pay to the order of: Eleni Zlotkey $10,500.00

How It Works
TYPE globally defines the data structure as a collection of records for use by the PL/SQL block and the
enclosed procedure. This declaration of both the type and the procedure at the same level—inside the
same code block—is necessary to allow the data to be passed to the function. The type and the
procedure are within the same scope, and thus the procedure can reference the type and accept values
of the type.

Defining the recs structure as a collection makes it much easier to pass large amounts of data
between routines with a single parameter. The data structure emps_type is defined as a collection of
employee records that can be passed to any function or procedure that requires employee data for
processing. This recipe is especially useful in that the logic of who receives a paycheck can be removed
from the routine that does the printing or the routine that archives the payroll data, for example.

10-8. Returning a Collection As a Parameter

Problem
Retrieving a collection of data is a common need. For example, you need a function that returns all
employee data and is easily called from any procedure.

Solution
Write a function that returns a complete collection of employee data. In this example, a package is used
to globally define a collection of employee records and return all employee data as a collection.

CREATE OR REPLACE PACKAGE empData AS

type emps_type is table of employees%ROWTYPE INDEX BY BINARY_INTEGER;

FUNCTION get_emp_data RETURN emps_type;

END empData;

CREATE OR REPLACE PACKAGE BODY empData as

FUNCTION get_emp_data RETURN emps_type is

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

225

cursor driver is
select *
from employees
order by last_name, first_name;

recs emps_type;

begin

 open driver;
 FETCH driver BULK COLLECT INTO recs;
 close driver;

 return recs;

end get_emp_data;

end empData;

declare

emp_recs empData.emps_type;

begin

 emp_recs := empData.get_emp_data;
 dbms_output.put_line ('Employee Records: ' || emp_recs.COUNT);

END;

Executing this block of code produces the following results.

Employee Records: 103

How It Works
By defining a PACKAGE, the data structure emps_type is available for use by any package, procedure, or
function that has access rights to it.

1
 The function get_emp_data within the common package contains all

the code necessary to fetch and return the employee data. This common routine can be used by multiple
applications that require the employee data for processing. This is a much more efficient method than
coding the same select statement in multiple applications.

It is not uncommon to include business rules in this type of function; for example, the routine may
fetch only active employees. If the definition of an active employee changes, you need to update only
one routine to fix all the applications that use it.

1
 To grant access rights, enter the following command: grant execute on empData to SCHEMA, where SCHEMA is

the user name that requires access. To grant access to every user in the database, use grant execute on empData
to PUBLIC;.

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

226

10-9. Counting the Members in a Collection

Problem
You have a collection, and you need to determine the total number of elements in the collection.

Solution
Invoke the built-in COUNT method on the collection. For example, the following code creates two
collections: a varying array and an INDEX BY array. The code then invokes the COUNT method on both
collections, doing so before and after adding some records to each.

DECLARE

TYPE vtype IS VARRAY(3) OF DATE;
TYPE ctype IS TABLE OF DATE INDEX BY BINARY_INTEGER;

vdates vtype := vtype (sysdate);
cdates ctype;

BEGIN

 DBMS_OUTPUT.PUT_LINE ('vdates size is: ' || vdates.COUNT);
 DBMS_OUTPUT.PUT_LINE ('cdates size is: ' || cdates.COUNT);

 FOR i IN 1..3 LOOP
 cdates(i) := SYSDATE + 1;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('cdates size is: ' || cdates.COUNT);

END;

Executing this block of code produces the following results:

vdates size is: 1
cdates size is: 0
cdates size is: 3

How It Works
The variable vdates is initialized with one value, so its size is reported as 1 even though it is defined to
hold a maximum of three values. The variable cdates is not initialized, so it is first reported with a size of
0. The loop creates and sets three collection values, which increases its count to 3.

Assigning a value directly to cdates(i) is allowed because cdates is an INDEX BY collection.
Assigning a value to vdates in the loop would cause an error because the array has only one defined
value. See the EXTEND method later in this chapter for more information on assigning values to non-INDEX
BY collections.

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

227

The COUNT method is especially useful when used on a collection populated with a fetch from BULK
COLLECT statement to determine the number of records fetched or to process records in a FOR .. LOOP.

10-10. Deleting a Record from a Collection

Problem
You need to randomly select employees from a collection. Using a random generator may select the
same employee more than once, so you need to remove the record from the collection before selecting
the next employee.

Solution
Invoke the built-in DELETE method on the collection. For example, the following code creates a collection
of employees and then randomly selects one from the collection. The selected employee is removed
from the collection using the DELETE method. This process is repeated until three employees have been
selected.

DECLARE

CURSOR driver IS
SELECT last_name
FROM employees;

TYPE rec_type IS TABLE OF driver%ROWTYPE INDEX BY BINARY_INTEGER;
recs rec_type;
j INTEGER;

BEGIN

 OPEN driver;
 FETCH driver BULK COLLECT INTO recs;
 CLOSE driver;

 DBMS_RANDOM.INITIALIZE(TO_NUMBER (TO_CHAR (SYSDATE, 'SSSSS')));

 FOR i IN 1..3 LOOP
-- Randomly select an employee
 j := MOD (ABS (DBMS_RANDOM.RANDom), recs.COUNT) + 1;
 DBMS_OUTPUT.PUT_LINE (recs(j).last_name);

-- Move all employees up one postion in the collection
 FOR k IN j+1..recs.COUNT LOOP
 recs(k-1) := recs(k);
 END LOOP;

-- Remove the last element in the collection
-- so the random number generator has the correct count.
 recs.DELETE(recs.COUNT);
 END LOOP;

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

228

 DBMS_RANDOM.TERMINATE;

END;

Executing this block of code produces the following results:

Olson
Chung
Seo

How It Works
The collection recs is populated with employee names via a BULK COLLECT. The FOR .. LOOP selects three
employees at random by generating a random number between 1 and the number of records in the
collection. Once an employee is selected, their name is removed from the collection, and the DELETE
method is used to reduce the number of elements, which changes the value returned by the COUNT
method for the next randomly generated number.

 Note: The DELETE method applies only to collections that are indexed. You can invoke DELETE only if the

collection’s underlying TYPE definition contains the INDEX BY clause.

10-11. Checking Whether an Element Exists

Problem
You are processing elements in a collection but cannot be certain that each element exists. Referencing
an element in a collection that does not exist will throw an exception. You want to avoid exceptions by
testing for existence before you access an element.

Solution
Use the EXISTS method to test whether a collection has a value for a particular index value. In the
following solution, a table collection is created, and then the second element is deleted. It is important
to note that a deleted element or an element that was never initialized is not equivalent to an element
with a null value.

DECLARE

TYPE ctype IS TABLE OF DATE INDEX BY BINARY_INTEGER;

cdates ctype;

BEGIN

 FOR i IN 1..3 LOOP

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

229

 cdates(i) := sysdate + i;
 END LOOP;

 cdates.DELETE(2);

 FOR i IN 1..3 LOOP
 IF cdates.EXISTS(i) then
 DBMS_OUTPUT.PUT_LINE ('cdates(' || i || ')= ' || cdates(i));
 END IF;
 END LOOP;

END;

Executing this block of code produces the following results:

cdates(1)= 07-AUG-10
cdates(3)= 09-AUG-10

How It Works
The first loop creates and initializes the elements in the collection; the DELETE method removes the
second element. Now we’re ready to loop through the data. The second loop tests for the existence of the
element index before attempting to use the variable. Attempting to access a value to an element in the
collection that does not exist throws an exception.

If the first loop initialized the collection elements to NULL, the remaining would execute in exactly
the same manner. The only difference would be in the output from running the block of code. In this
case, no dates would print. Referencing an element in a collection with a null value does not throw an
exception because the indexed element exists, whereas referencing an element that does not exist does
throw an exception. Here is the output in this example. Note neither solution prints an element for
subscript 2.

cdates(1)=
cdates(3)=

10-12. Increasing the Size of a Collection

Problem
You have a VARRAY with a defined maximum size, but not all elements are initialized, and you need to
add more elements to the collection.

Solution
Use the EXTEND method to create new elements within the predefined boundaries. The following
example adds five elements using a loop:

DECLARE

TYPE vtype IS VARRAY(5) OF DATE;
vdates vtype := vtype (sysdate, sysdate+1, sysdate+2); -- initialize 3 of the 5 elements

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

230

BEGIN

 DBMS_OUTPUT.PUT_LINE ('vdates size is: ' || vdates.COUNT);

 FOR i IN 1..5 LOOP
 if NOT vdates.EXISTS(i) then
 vdates.EXTEND;
 vdates(i) := SYSDATE + i;
 END IF;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('vdates size is: ' || vdates.COUNT);

END;

Executing this block of code produces the following results:

vdates size is: 3
vdates size is: 5

How It Works
The TYPE declaration defines a maximum of five elements in the collection, which is initialized with three
values. The loop tests for the existence of the elements by index number. The EXTEND method allocates
storage space for the new elements. Without the EXTEND statement preceding the assignment, Oracle will
raise an error “ORA-06533: Subscript beyond count.” This occurs when the loop attempts to assign a
value to the fourth element in the collection.

The EXTEND method applies to TABLE and VARRAY collections that are not indexed. In other words, the
EXTEND method applies when the TABLE or VARRAY type definition does not contain the INDEX BY
clause. To assign a value to a collection that is indexed, simply reference the collection using the index
value.

10-13. Navigating Collections

Problem
You need a routine to display sales totaled by region, which is stored in a collection of numbers, but the
collection is indexed by a character string. Using a LOOP from 1 to the maximum size will not work.

Solution
Use the FIRST and LAST method to traverse the collection allowing PL/SQL to supply the proper index
values. In this example, sales amounts are stored in a TABLE indexed by a string.

DECLARE

TYPE ntype IS TABLE OF NUMBER INDEX BY VARCHAR2(5);
nlist ntype;
idx VARCHAR2(5);

 CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

231

total integer := 0;

BEGIN

 nlist('North') := 100;
 nlist('South') := 125;
 nlist('East') := 75;
 nlist('West') := 75;

 idx := nlist.FIRST;
 LOOP
 EXIT WHEN idx is null;
 DBMS_OUTPUT.PUT_LINE (idx || ' = ' || nlist(idx));
 total := total + nlist(idx);
 idx := nlist.NEXT(idx);
 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('Total: ' || total);

END;

Executing this block of code produces the following results:

East = 75
North = 100
South = 125
West = 75
Total: 375

How It Works
The FIRST method returns the lowest index value in the collection. In this case, the value is East, because
the collection is sorted alphabetically. The loop is entered with idx initialized to the first value in the
collection. The NEXT method returns the next index value alphabetically in the collection. The loop
continues executing until the NEXT method returns a null value, which occurs after the last index value in
the collect is retrieved.

To traverse the collection in reverse alphabetical order, simply initialize the idx value to nlist.LAST.
Then replace the nlist.NEXT with nlist.PRIOR.

 Note The FIRST, NEXT, PRIOR, and LAST methods are most useful with associative arrays but also work with

collections indexed by an integer.

CHAPTER 10 PL/SQL COLLECTIONS AND RECORDS

232

10-14. Trimming a Collection

Problem
You need to remove one or more items from the end of a non-INDEX BY collection. The DELETE method
will not work because it applies only to INDEX BY collections.

Solution
Use the TRIM method to remove one or more elements from the end of the collection. In this example, a
VARRY is initialized with five elements. The TRIM method is used to remove elements from the end of the
collection.

DECLARE

TYPE vtype IS VARRAY(5) OF DATE;
vdates vtype := vtype (sysdate, sysdate+1, sysdate+2, sysdate+3, sysdate+4);

BEGIN

 DBMS_OUTPUT.PUT_LINE ('vdates size is: ' || vdates.COUNT);
 vdates.TRIM;
 DBMS_OUTPUT.PUT_LINE ('vdates size is: ' || vdates.COUNT);
 vdates.TRIM(2);
 DBMS_OUTPUT.PUT_LINE ('vdates size is: ' || vdates.COUNT);

END;

Executing this block of code produces the following results:

vdates size is: 5
vdates size is: 4
vdates size is: 2

How It Works
The TRIM method deletes elements from the end of the collection including elements not initialized. It
accepts an optional parameter for the number of elements to delete; otherwise, it defaults to the last
element. The TRIM method applies to TABLE and VARRAY collections that are not indexed. If the underlying
TYPE definition does not contain the INDEX BY clause, then you can invoke TRIM.
The TRIM method is limited to removing elements from the end of a collection, whereas the DELETE
method can remove elements anywhere in a collection. If you DELETE an element in the middle of a
collection, then executing a FOR .. LOOP from one to the collection’s COUNT will not work properly. First,
if you attempt to access the element that was deleted without checking whether it EXISTS, an exception is
thrown. Second, the COUNT method will return a value that is less than the collection’s maximum index
value, which means the FOR .. LOOP will not process all elements in the collection.

C H A P T E R 11

233

Automating Routine Tasks

Oracle provides methods to schedule one-time and recurring jobs within the database, which is
beneficial when you want to automate repetitive tasks and run them at times when a DBA may not be
available. This chapter provides recipes to help you get started scheduling jobs (especially PL/SQL jobs),
capturing output, sending e-mail notifications, and keeping data in sync with other databases.

11-1. Scheduling Recurring Jobs

Problem
You want to schedule a PL/SQL procedure to run at a fixed time or at fixed intervals.

Solution
Use the EXEC DBMS_SCHEDULER.CREATE_JOB procedure to create and schedule one-time jobs and jobs that
run on a recurring schedule. Suppose, for example, that you need to run a stored procedure named
calc_commissions every night at 2:30 a.m. to calculate commissions based on the employees’ salaries.
Normally, commissions would be based on sales, but the default HR schema doesn’t provide that table,
so we’ll use an alternate calculation for demonstration purposes:

EXEC DBMS_SCHEDULER.CREATE_JOB (-
 JOB_NAME=>'nighly_commissions', -
 JOB_TYPE=>'STORED_PROCEDURE', -
 JOB_ACTION=>'calc_commisions', -
 ENABLED=>TRUE, -
 REPEAT_INTERVAL=>'FREQ=DAILY;INTERVAL=1;BYHOUR=02;BYMINUTE=30');

How It Works
The DBMS_SCHEDULER.CREATE_JOB procedure sets up a nightly batch job. JOB_NAME must be unique. The
JOB_TYPE, in this example, is STORED_PROCEDURE. This informs the scheduler the job is a PL/SQL procedure
stored in the database. In addition to scheduling a stored procedure, the scheduler can also execute a
PL/SQL_BLOCK, an external EXECUTABLE program, or a job CHAIN. See Recipe 11-6 for an example on
scheduling job chains.

The JOB_ACTION identifies the stored procedure to run. If the procedure is owned by another
schema, then include the schema name, for example, HR.calc_commission. If the procedure is part of a
larger package, include that as well, for example, HR.my_package.calc_commission.

ENABLED is set to TRUE to tell the scheduler to run at the next scheduled time. By default, the ENABLED
parameter is FALSE and would require a call to the DBMS_SCHEDULER.ENABLE procedure to enable the job.

CHAPTER 11 AUTOMATING ROUTINE TASKS

234

The REPEAT_INTERVAL is an important part of the CREATE_JOB routine. It identifies the frequency, in
this case DAILY. The INTERVAL tells scheduler to run the job every day, as opposed to 2 or 3, which would
run every other day, or every third day. The BYHOUR and BYMINUTE sections specifies the exact time of the
day to run. In this example, the job will run at 2:30 a.m.

The scheduled job, nightly_commissions, runs the stored procedure calc_commission, which reads
the data, calculates the commission, and stores the commission records. Running this job nightly keeps
the employees’ commission data current with respect to daily sales figures.

11-2. E-mailing Output from a Scheduled Job

Problem
You have a scheduled job that runs a stored procedure at a regular interval. The procedure produces
output that ordinarily would be sent to the screen via the DBMS_OUTPUT.PUT_LINE procedure, but since it
runs as a nightly batch job, you want to send the output to a distribution list as an e-mail message.

Solution
Save the output in a CLOB variable and then send it to the target distribution list using the

UTL_MAIL.SEND procedure. For example, suppose you want to audit the employee table periodically to
find all employees who have not been assigned to a department within the company. Here’s a procedure
to do that:

CREATE OR REPLACE PROCEDURE employee_audit AS

CURSOR driver IS -- find all employees not in a department
SELECT employee_id, first_name, last_name
FROM employees
WHERE department_id is null
ORDER BY last_name, first_name;

buffer CLOB := null; -- the e-mail message

BEGIN

 FOR rec IN driver LOOP -- generate the e-mail message
 buffer := buffer ||
 rec.employee_id || ' ' ||
 rec.last_name || ', ' ||
 rec.first_name || chr(10);
 END LOOP;

-- Send the e-mail
 IF buffer is not null THEN -- there are employees without a department
 buffer := 'Employees with no Department' || CHR(10) || CHR(10) || buffer;

 UTL_MAIL.SEND (
 SENDER=>'someone@mycompany.com',
 RECIPIENTS=>'audit_list@mycompany.com',
 SUBJECT=>'Employee Audit Results',

mailto:someone@mycompany.com
mailto:list@mycompany.com

 CHAPTER 11 AUTOMATING ROUTINE TASKS

235

 MESSAGE=>buffer);
 END IF;

END;

How It Works
The procedure is very straightforward in that it finds all employees with no department. When run as a
scheduled job, calls to DBMS_OUTPUT.PUT_LINE won’t work because there is no “screen” to view the output.
Instead, the output is collected in a CLOB variable to later use in the UTL_MAIL.SEND procedure. The key to
remember in this recipe is there is no screen output from a stored procedure while running as a
scheduled job. You must store the intended output and either write it to an operating system file or, as in
this example, send it to users in an e-mail.

11-3. Using E-mail for Job Status Notification

Problem
You have a scheduled job that is running on a regular basis, and you need to know whether the job fails
for any reason.

Solution
Use the ADD_JOB_EMAIL_NOTIFICATION procedure to set up an e-mail notification that sends an e-mail
when the job fails to run successfully. Note, this solution builds on Recipe 11-1 where a nightly batch job
was set up to calculate commissions.

EXEC DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION (-
 JOB_NAME=>'nightly_commissions', -
 RECIPIENTS=> 'me@my_company.com,dist_list@my_company.com');

How It Works
The previous recipe is the simplest example of automating e-mail in the event a job fails. The
ADD_JOB_EMAIL_NOTIFICATION procedure accepts several parameters; however, the only required
parameters are JOB_NAME and RECIPIENTS. The JOB_NAME must already exist from a previous call to the
CREATE_JOB procedure (see Recipe 11-1 for an example). The RECIPIENTS is a comma-separated list of e-
mail addresses to receive e-mail when an event occurs; by default the events that trigger an e-mail are
JOB_FAILED, JOB_BROKEN, JOB_SCH_LIM_REACHED, JOB_CHAIN_STALLED, and JOB_OVER_MAX_DUR. Additional
event parameters are JOB_ALL_EVENTS, JOB_COMPLETED, JOB_DISABLED, JOB_RUN_COMPLETED, JOB_STARTED,
JOB_STOPPED, AND JOB_SUCCEEDED.

The full format of the ADD_JOB_EMAIL_NOTIFICATION procedure accepts additional parameters, but
the default for each is sufficient to keep tabs on the running jobs. The body of the e-mail will return the
error messages required to debug the issue that caused the job to fail.

To demonstrate the notification process, the commissions table was dropped after the job was set
up to run. The database produced an e-mail with the following subject and body:

SUBJECT: Oracle Scheduler Job Notification - HR.NIGHTLY_COMMISSIONS JOB_FAILED
BODY:
Job: JYTHON.NIGHTLY_COMMISSIONS

mailto:me@my_company.com
mailto:list@my_company.com

CHAPTER 11 AUTOMATING ROUTINE TASKS

236

Event: JOB_FAILED
Date: 28-AUG-10 03.15.30.102000 PM US/CENTRAL
Log id: 1118
Job class: DEFAULT_JOB_CLASS
Run count: 1
Failure count: 1
Retry count: 0
Error code: 6575
Error message: ORA-06575: Package or function CALC_COMMISSIONS is in an invalid state

11-4. Refreshing a Materialized View on a Timed Interval

Problem
You have a materialized view that must be refreshed on a scheduled basis to reflect changes made to the
underlying table.

Solution
First, create the materialized view with a CREATE MATERIALIZED VIEW statement. In this example, a
materialized view is created consisting of the department and its total salary.:

CREATE MATERIALIZED VIEW dept_salaries
BUILD IMMEDIATE
AS
SELECT department_id, SUM(salary) total_salary
FROM employees
GROUP BY department_id;

Display the contents of the materialized view:

SELECT *
FROM dept_salaries
ORDER BY department_id;

DEPARTMENT_ID TOTAL_SALARY
------------- ------------
 10 6500
 20 20200
 30 43500
 40 6500
 50 297100
 60 35000
 70 10000
 80 305600
 90 58000
 100 51600
 110 20300
 7000

 CHAPTER 11 AUTOMATING ROUTINE TASKS

237

Use the EXEC DBMS_REFRESH.MAKE procedure to set up a refresh of the materialized view:

EXEC DBMS_REFRESH.MAKE ('HR_MVs', 'dept_salaries', SYSDATE, 'TRUNC(SYSDATE)+1');

Change the underlying data of the view.:

UPDATE employees
SET salary = salary * 1.03;

COMMIT;

Note that the materialized view has not changed:

SELECT *
FROM dept_salaries
ORDER BY department_id;

DEPARTMENT_ID TOTAL_SALARY
------------- ------------
 10 6500
 20 20200
 30 43500
 40 6500
 50 297100
 60 35000
 70 10000
 80 305600
 90 58000
 100 51600
 110 20300
 7000

Next, manually refresh the materialized view:

EXEC DBMS_REFRESH.REFRESH ('HR_MVs');

The materialized view now reflects the updated salaries:

SELECT *
FROM dept_salaries
ORDER BY department_id;

DEPARTMENT_ID TOTAL_SALARY
------------- ------------
 10 6695
 20 20806
 30 44805
 40 6695
 50 306013
 60 36050
 70 10300
 80 314768

CHAPTER 11 AUTOMATING ROUTINE TASKS

238

 90 59740
 100 53148
 110 20909
 7210

How It Works
The DBMS_REFRESH.MAKE procedure creates a list of materialized views that refresh at a specified time.
Although you could schedule a job that calls the DBMS_REFRESH.REFRESH procedure to refresh the view, the
MAKE procedure simplifies this automated task. In addition, once your refresh list is created, you can later
add more materialized views to the schedule using the DBMS_REFRESH.ADD procedure.

 The first argument of the DBMS_REFRESH.MAKE procedure specifies the name of this list; in this
example, the list name is HR_MVs. This name must be unique among lists. The next parameter is a list of
all materialized views to refresh. The procedure accepts either a comma-separated string of materialized
view names or an INDEX BY table, each containing a view name. If the list contains a view not owned by
the schema creating the list, then the view name must be qualified with the owner, for example,
HR.dept_salaries. The third parameter specifies the first time the refresh will run. In this example,
sysdate is used, so the refresh is immediate. The fourth parameter is the interval, which must be a
function that returns a date/time for the next run time. This recipe uses 'TRUNC(SYSDATE)+1', which
causes the refresh to run at midnight every night.

In this example, the CREATE MATERIALIZED VIEW statement creates a simple materialized view of the
total salary by departments, and the data is selected from the view to verify that it is populated with
correct data.

 Note After adding a 3 percent raise to each employee’s salary, we continue to see a materialized view that

reflects the old data. The DBMS_REFRESH routine solves that problem.

Although the refresh list was created, the content of the materialized view remains unchanged until
the automatic update, which occurs every night at midnight. After the refresh occurs, the materialized
view will reflect all changes made to employee salary since the last refresh occurred.

The manual call to DBMS_REFRESH.REFRESH demonstrates how the content of the materialized view
changes once the view is refreshed. Without the call to the REFRESH procedure, the content of the
materialized view remains unchanged until the next automated run of the REFRESH procedure.

11-5. Synchronizing Data with a Remote Data Source

Problem
Your database instance requires data that is readily available in another Oracle instance but cannot be
synchronized with a materialized view, and you do not want to duplicate data entry.

Solution
Write a procedure that creates a connection to the remote HR database and performs the steps needed
to synchronize the two databases. Then use the EXEC DBMS_SCHEDULER.CREATE_JOB procedure to run the

 CHAPTER 11 AUTOMATING ROUTINE TASKS

239

procedure on a regular basis. Suppose, for example, that your Oracle Database instance requires data
from the HR employee table, which is in another instance. In addition, your employee table contains
tables with foreign key references on the employee_id that prevents you from using a materialized view
to keep the HR employee table in synchronization.

Create a database connection to the remote HR database, and then download the data on a regular
basis:

CREATE DATABASE LINK hr_data
CONNECT TO hr
IDENTIFIED BY hr_password
USING
'(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=node_name)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=h
r_service_name)))';

CREATE OR REPLACE PROCEDURE sync_hr_data AS

CURSOR driver IS
SELECT *
FROM employees@hr_data;

TYPE recs_type IS TABLE OF driver%ROWTYPE INDEX BY BINARY_INTEGER;
recs recs_type;

BEGIN

 OPEN DRIVER;
 FETCH DRIVER BULK COLLECT INTO recs;
 CLOSE DRIVER;

 FOR i IN 1..recs.COUNT LOOP
 UPDATE employees
 SET first_name = recs(i).first_name,
 last_name = recs(i).last_name,
 email = recs(i).email,
 phone_number = recs(i).phone_number,
 hire_date = recs(i).hire_date,
 job_id = recs(i).job_id,
 salary = recs(i).salary,
 commission_pct = recs(i).commission_pct,
 manager_id = recs(i).manager_id,
 department_id = recs(i).department_id
 WHERE employee_id = recs(i).employee_id
 AND (NVL(first_name,'~') <> NVL(recs(i).first_name,'~')
 OR last_name <> recs(i).last_name
 OR email <> recs(i).email
 OR NVL(phone_number,'~') <> NVL(recs(i).phone_number,'~')
 OR hire_date <> recs(i).hire_date
 OR job_id <> recs(i).job_id
 OR NVL(salary,-1) <> NVL(recs(i).salary,-1)
 OR NVL(commission_pct,-1) <> NVL(recs(i).commission_pct,-1)
 OR NVL(manager_id,-1) <> NVL(recs(i).manager_id,-1)
 OR NVL(department_id,-1) <> NVL(recs(i).department_id,-1)

CHAPTER 11 AUTOMATING ROUTINE TASKS

240

);

 END LOOP;

-- find all new rows in the HR database since the last refresh
 INSERT INTO employees
 SELECT *
 FROM employees@hr_data
 WHERE employee_id NOT IN (
 SELECT employee_id
 FROM employees);

END sync_hr_data;

EXEC DBMS_SCHEDULER.CREATE_JOB (-
 JOB_NAME=>'sync_HR_employees', -
 JOB_TYPE=>'STORED_PROCEDURE', -
 JOB_ACTION=>'sync_hr_data', -
 ENABLED=>TRUE, -
 REPEAT_INTERVAL=>'FREQ=DAILY;INTERVAL=1;BYHOUR=00;BYMINUTE=30');

How It Works
A database link is required to access the data. This recipe focuses more on the synchronization process,
but the creation of the database link is demonstrated here. This link, when used, will remotely log into
the HR instance as the HR schema owner.

The procedure sync_hr_data reads all records from the HR instances. It does so in a BULK COLLECT
statement, because this is the most efficient method to read large chunks of data, especially over a
remote connection. The procedure then loops through each of the employee records updating the local
records, but only if the data changed, because there is no need to issue the UPDATE unless something has
changed. The NVL is required in the WHERE clause to accommodate values that are NULL and change to a
non-NULL value, or vice versa.

The final step is to schedule the nightly job. The CREATE_JOB procedure of the DBMS_SCHEDULER
package completes this recipe. The stored procedure sync_hr_data is executed nightly at 12:30 a.m. See
Recipe 11-1 for more information on scheduling a nightly batch job.

11-6. Scheduling a Job Chain

Problem
You have several PL/SQL procedures that must run in a fixed sequence—some steps sequentially, others
in parallel. If one step fails, processing should stop.

Solution
Use the DBMS_SCHEDULER _CHAIN commands to create and define the order of execution of the chained
procedures. Figure 11-1 depicts a simple example of a chain of procedures where the successful
completion of step 1 kicks off parallel executions of two additional steps. When the two parallel steps
compete successfully, the final step runs.

 CHAPTER 11 AUTOMATING ROUTINE TASKS

241

Figure 11-1. Flowchart representation of a job chain.

The following code shows how you can use the CREATE_CHAIN, CREATE_PROGRAM, DEFINE_CHAIN_STEP,
and DEFINE_CHAIN_RULE options to implement the order of execution shown in Figure 11-1.

-- Define the Chain
BEGIN
 DBMS_SCHEDULER.CREATE_CHAIN (
 CHAIN_NAME => 'Chain1');
END;

-- Create/define the program to run in each step
BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (
 PROGRAM_NAME => 'Program1',
 PROGRAM_TYPE => 'STORED_PROCEDURE',
 PROGRAM_ACTION => 'Procedure1',
 ENABLED => true);
END;

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (
 PROGRAM_NAME => 'Program2',
 PROGRAM_TYPE => 'STORED_PROCEDURE',
 PROGRAM_ACTION => 'Procedure2',
 ENABLED => true);
END;

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (

CHAPTER 11 AUTOMATING ROUTINE TASKS

242

 PROGRAM_NAME => 'Program3',
 PROGRAM_TYPE => 'STORED_PROCEDURE',
 PROGRAM_ACTION => 'Procedure3',
 ENABLED => true);
END;

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (
 PROGRAM_NAME => 'Program4',
 PROGRAM_TYPE => 'STORED_PROCEDURE',
 PROGRAM_ACTION => 'Procedure4',
 ENABLED => true);
END;

-- Create each step using a unique name
BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 CHAIN_NAME => 'Chain1',
 STEP_NAME => 'Step1',
 PROGRAM_NAME => 'Program1');
END;

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 CHAIN_NAME => 'Chain1',
 STEP_NAME => 'Step2_1',
 PROGRAM_NAME => 'Program2');
END;

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 CHAIN_NAME => 'Chain1',
 STEP_NAME => 'Step2_2',
 PROGRAM_NAME => 'Program3');
END;

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 CHAIN_NAME => 'Chain1',
 STEP_NAME => 'Step3',
 PROGRAM_NAME => 'Program4');
END;

-- Define the step rules; which step runs first and their order
BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 CHAIN_NAME => 'Chain1',
 CONDITION => 'TRUE',
 ACTION => 'START Step1');

END;

 CHAPTER 11 AUTOMATING ROUTINE TASKS

243

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 CHAIN_NAME => 'Chain1',
 CONDITION => 'Step1 COMPLETED',
 ACTION => 'START Step2_1, Step2_2');
END;

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 CHAIN_NAME => 'Chain1',
 CONDITION => 'Step2_1 COMPLETED AND Step2_2 COMPLETED',
 ACTION => 'START Step3');
END;

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 CHAIN_NAME => 'Chain1',
 CONDITION => 'Step3 COMPLETED',
 ACTION => 'END');
END;

-- Enable the chain
BEGIN
 DBMS_SCHEDULER.ENABLE ('Chain1');
END;
/

-- Schedule a Job to run the chain every night
BEGIN
 DBMS_SCHEDULE.CREATE_JOB (
 JOB_NAME => 'chain1_Job',
 JOB_TYPE => 'CHAIN',
 JOB_ACTION => 'Chain1',
 REPEAT_INTERVAL => 'freq=daily;byhour=3;byminute=0;bysecond=0',
 enabled => TRUE);
END;

How It Works
Defining and scheduling a job chain may seem daunting at first but can be broken down into the
following steps:

Create the chain.

Define each program that will run.

Create each step in the chain.

Create the rules that link the chain together.

Enable the chain.

Schedule the chain as a job to run a specific time or interval.

CHAPTER 11 AUTOMATING ROUTINE TASKS

244

The DBMS_SCHEDULER.CREATE_CHAIN procedure creates a chain named as Chain1.

 Note The chain_name must be unique and will be used in subsequent steps.

The DBMS_SCHEDULER.CREATE_PROGRAM procedure defines the executable code that will run. The
programs defined here are run when a chain step is executed. The procedure accepts the following
parameters:

• PROGRAM_NAME: A unique name to identify the program.

• PROGRAM_TYPE : Valid values are plsql_block, stored_procedure, and executable.

• PROGRAM_ACTION : Defines what code actually runs when executed based on the
value for PROGRAM_TYPE. For a PROGRAM_TYPE of PLSQL_BLOCK, it is a text string of the
PL/SQL code to run. For a STORED_PROCEDURE, it is the name of an internal PL/SQL
procedure. For an EXECUTABLE, it is the name of an external program.

• ENABLE : Determines whether the program can be executed; the default is FALSE if
not specified.

The DBMS_SCHEDULER.DEFINE_CHAIN_STEP procedure defines each step in the chain. You must supply
the chain’s name as its first parameters, which was created in the DBMS_SCHEDULER.CREATE_CHAIN
procedure, along with a unique name for the step in the chained process and the name of the PL/SQL
program to execute during the step. Note that the program is the name assigned in the
DBMS_SCHEDULER.CREATE_PROGRAM procedure; it is not the name of your PL/SQL program.

The DBMS_SCHEDULER.DEFINE_CHAIN_RULE procedure defines how each step in the chain is linked
together. Arguably, this is the most difficult step in the process because you must define the starting and
ending steps in the chain properly. In addition, you must take care in defining links between sequential
steps and parallel steps. Sketching a flow chart like the one shown in Figure 11-1 can aid in the
sequencing of the chain steps.

The DBMS_SCHEDULER.DEFINE_CHAIN_RULE procedure accepts the following parameters:

• CHAIN_NAME: The name used when you created the chain.

• CONDITION: An expression that must evaluate to a boolean expression and must
evaluate to true to perform the action. Possible test conditions are NOT_STARTED,
SCHEDULED, RUNNING, PAUSED, STALLED, SUCCEEDED, FAILED, and STOPPED.

• ACTION: The action to perform when the condition evaluates to true. Possible
actions are start a step, stop a step, or end the chain.

• RULE_NAME: The name you want to give to the rule being created. If omitted, Oracle
will generate a unique name.

• COMMENTS : Optional text to describe the rule.

In this example, the first call to the DBMS_SCHEDULER.DEFINE_CHAIN_RULE procedure sets the condition
to TRUE and the action to START Step1. This causes step 1 to run immediately when the chain starts. The
next call to the DBMS_SCHEDULER.DEFINE_CHAIN_RULE procedure defines the action to take when step 1

 CHAPTER 11 AUTOMATING ROUTINE TASKS

245

completes successfully. In this example, steps 2.1 and 2.2 are started. Starting multiple steps
simultaneously allows you to schedule steps to run in parallel. In the third call to the
DBMS_SCHEDULER.DEFINE_CHAIN_RULE procedure, the condition waits for the successful completion of
steps 2.1 and 2.2 and then starts step 3 as its action. The final call to the
DBMS_SCHEDULER.DEFINE_CHAIN_RULE procedure waits for the successful completion of step 3 and then
ends the chain.

If any step in the chain fails, the entire chained process stops at its next condition test. For example,
if step 1 fails, steps 2.1 and 2.2 are never started. However, if steps 2.1 and 2.2 are running and step 2.1
fails, step 2.2 will continue to run and may complete successfully, but step 3 will never run. You can
account for chain failures and other conditions by testing for a condition such as NOT_STARTED,
SCHEDULED, RUNNING, PAUSED, STALLED, FAILED, and STOPPED.

The call to the procedure DBMS_SCHEDULER.ENABLE does just what you expect; it enables the chain to
run. It is best to keep the chain disabled while defining the steps and rules. You can run the chain
manually with a call to the DBMS_SCHEDULE.RUN_CHAIN procedure or, as shown in this example, with a call
to the DBMS_SCHEDULE.CREATE_JOB procedure. See Recipe 11-1 for more information on scheduling a job.

C H A P T E R 12

247

Oracle SQL Developer

Tools can be useful for increasing productivity while developing code. They oftentimes allow you to take
shortcuts when coding by providing templates to start from or by providing autocompletion as words
are typed. A good development tool can also be useful by incorporating several different utilities and
functions into one development environment. Oracle SQL Developer is no exception, because it
provides functionality for database administrators and PL/SQL developers alike. Functionalities include
creating database tables, importing and exporting data, managing and administering multiple
databases, and using robust PL/SQL development tools.

Oracle SQL Developer is an enterprise-level development environment, and it would take an entire
book to document each of its features. Rather than attempting to cover each of the available options, this
chapter will focus on developing and maintaining Oracle PL/SQL code using the tool. Along the way, you
will learn how to configure database connections and obtain information from database objects. In the
end, you should feel comfortable developing PL/SQL applications using the Oracle SQL Developer
environment.

12-1. Creating Standard and Privileged Database Connections

Problem
You want to create a persistent connection to your database from within Oracle SQL Developer using
both privileged and standard accounts so that you can work with your database.

Solution
Open Oracle SQL Developer, and select New from the File menu. This will open the Create a New
window. Select the Database Connection option, and click OK. A New/Select Database Connection
window opens, which has a list of existing database connections on the left side and an input form for
creating a new connection on the right side, as shown in Figure 12-1.

CHAPTER 12 ORACLE SQL DEVELOPER

248

Figure 12-1. Creating a database connection

If you are creating a standard connection, choose the Basic connection type. If you are creating a
privileged connection as SYS, then choose the SYSDBA connection type. Once you have created a
connection, then you will be able to connect to the database via the user for which you have made a
connection and browse the objects belonging to that user’s schema.

How It Works
Before you can begin working with PL/SQL code in Oracle SQL Developer, you must create a database
connection. Once created, this connection will remain in the database list that is located on the left side
of the Oracle SQL Developer environment. During the process of creating the connection, you can either
select the box to allow the password to be cached or keep it deselected so that you will be prompted to
authenticate each time you want to use the connection. From a security standpoint, it is advised that you
leave the box unchecked so that you are prompted to authenticate for each use.

Once the connection has been successfully established and you are authenticated, the world of
Oracle SQL Developer is opened up, and you have a plethora of options available. At this point, you have
the ability to browse through all the database tables, views, stored programs, and other objects that are
available to the user account that you used to initiate the connection to the database by simply using the
tree menu located within the left pane of the environment. Figure 12-2 shows a sample of what you will
see when your database connection has been established.

 CHAPTER 12 ORACLE SQL DEVELOPER

249

Figure 12-2. Database connection in the navigator

 Note If you plan to develop PL/SQL code for system events such as an AFTER LOGON trigger, you should create a

separate connection for the privileged user using SYSDBA. This will allow you to traverse the privileged database

objects.

As mentioned in the introduction to this chapter, you will learn how to use those features provided
by Oracle SQL Developer that are useful for PL/SQL application development. This does not mean the
other features offered by the environment are not useful, but it would take an entire book to cover each
feature that Oracle SQL Developer has to offer. Indeed, there are entire books on the topic. This book
strives to provide you with the education and concepts that you will need to know to develop complete
and robust PL/SQL applications using Oracle SQL Developer.

12-2. Obtaining Information About Tables

Problem
You are interested in learning more about a particular database table. You also want to look at system
triggers and other privileged PL/SQL objects.

Solution
Use the Oracle SQL Developer navigator to select the table that you want to view information about, as
demonstrated in Figure 12-3.

CHAPTER 12 ORACLE SQL DEVELOPER

250

Figure 12-3. Viewing table information

The editor window will then populate with a tab that consists of a worksheet and several subtabs.
Each of these tabs provides different information about the table you are inspecting. Figure 12-4 shows
the Columns tab of the Table Editor.

Figure 12-4. Table Editor

How It Works
Oracle SQL Developer provides an excellent means for examining table metadata. When a table is
selected within the database connection navigator, a worksheet becomes available that includes detailed
information pertaining to the table characteristics and data. The first tab, which is labeled Columns,
includes information about the table columns and each of their datatypes. This is most likely the tab that
you will spend the most time in. It includes toolbar buttons that allow you to perform editing on the
table and to refresh the table view in the editor, and it even includes an extensive table manipulation
menu labeled Action that is a database administrator’s dream come true.

Next, the Data tab provides a live view of the data that exists within the table. It also includes toolbar
buttons for inserting and deleting rows. This tab resembles a spreadsheet, and it allows different
columns to be edited and then committed to the database. For a PL/SQL developer, it is most useful for
editing data within a table that is being used for application debugging or testing purposes.

The Triggers tab will be useful to PL/SQL developers because it displays a selectable list of all table
triggers. You can also create new triggers from the tab. Figure 12-5 shows the Triggers tab.

 CHAPTER 12 ORACLE SQL DEVELOPER

251

Figure 12-5. Triggers tab of editor

When a trigger is selected on the Triggers tab, its DDL is displayed in a panel on the bottom half of
the window. The green arrow button will allow the trigger to be executed, and the refresh specifies an
interval of time. You will learn more about trigger development in Recipe 12-11.

Oracle SQL Developer provides very useful information regarding database tables for PL/SQL
developers. It also provides convenient access for trigger development and manipulation.

12-3. Enabling Output to Be Displayed

Problem
You want to display the results of DBMS_OUTPUT within Oracle SQL Developer.

CHAPTER 12 ORACLE SQL DEVELOPER

252

Solution
Enable DBMS_OUTPUT for your connection via the Dbms Output pane. This pane resides on the lower-right
side of the IDE. Do so by selecting the green plus icon within the pane and then choosing the desired
connection from the resulting dialog box. Figure 12-6 shows the connection dialog box. After selecting
the desired connection and then clicking the OK button, you will be prompted for a password for the
connection if you are not already connected. Once a successful password has been entered, then
DBMS_OUTPUT will be enabled for the specified connection.

Figure 12-6. Select Connection dialog box

After enabling the DBMS_OUTPUT option, you will be able to see the output from DBMS_OUTPUT within
Oracle SQL Developer. This can be very useful, especially for testing purposes.

How It Works
The easiest way to enable SERVEROUTPUT for a particular database connection is to enable DBMS_OUTPUT
from within the Dbms Output window. Doing so will enable output to be displayed within the pane
when the code is executed.

 Note For more information on the DBMS_OUTPUT package, please see Recipe 1-6.

Selecting the Dbms Output option from the View menu will open the DBMS_OUTPUT pane. This pane
gives you several options that include the ability to save the script output, change the buffer size, and
even print the output. To enable SERVEROUTPUT via the pane, you must select the green plus symbol and
choose a database connection. You will see the correct script output if you run the script again after
enabling DBMS_OUTPUT via one of the two options we have discussed. Figure 12-7 shows the Dbms Output
pane.

 CHAPTER 12 ORACLE SQL DEVELOPER

253

Figure 12-7. Dbms Output pane

Once a connection has been established using the Dbms Output pane, all DBMS_OUTPUT code that is
executed against that connection will be displayed within the pane. It is possible to have more than one
connection established within the pane, and in this case different tabs can be used to select the
connection of your choice.

12-4. Writing and Executing PL/SQL

Problem
You want to use Oracle SQL Developer to execute an anonymous block of code.

Solution
Establish a connection to the database of your choice, and the SQL worksheet will automatically open.
Once the worksheet has opened, you can type the code directly into it. For the purposes of this recipe,
type or copy/paste the following anonymous block into a SQL worksheet:

DECLARE
 CURSOR emp_cur IS
 SELECT * FROM employees;

 emp_rec emp_cur%ROWTYPE;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name);
 END LOOP;
END;

Figure 12-8 shows the Oracle SQL Developer worksheet after this anonymous block has been

written into it.

CHAPTER 12 ORACLE SQL DEVELOPER

254

Figure 12-8. Oracle SQL Developer worksheet with PL/SQL anonymous block

How It Works
By default, when you establish a connection within Oracle SQL Developer, a SQL worksheet for that
connection is opened. This worksheet can be used to create anonymous code blocks, run SQL
statements, and create PL/SQL code objects. The SQL worksheet is analogous to the SQL*Plus command
prompt, although it does not allow all the same commands that are available using SQL*Plus.

If you want to open more than one SQL worksheet or a new worksheet for a connection, this can be
done in various ways. You can right-click (Ctrl+click) the database connection of your choice and then
select Open SQL Worksheet from the menu. Another way to open a new worksheet is to use the SQL
Worksheet option within the Tools menu. This will allow you to specify the connection of your choice to
open a worksheet against.

As you type, you will notice that the worksheet will place all Oracle keywords into a different color.
This helps distinguish between keywords and defined variables or stored programs. By default, the
keywords are placed into a bold blue text, but this color can be adjusted within the user Preferences
window that can be accessed from the Tools drop-down menu. Similarly, any text placed within single
quotes will appear in a different color. By default, this is also blue, except it is not bold.

Besides the syntax coloring, there are some other features of the SQL worksheet that can help make
your programming life easier. Oracle SQL Developer will provide autocompletion for some SQL and
PL/SQL statements. For instance, if you enter a package name and type a dot, all the package members
will be displayed in the drop-down list. You can also press Ctrl+spacebar to manually activate the
autocomplete drop-down list. After the drop-down list appears, you can use the arrow keys to choose
the option you want to use and then hit the Tab key. Oracle SQL Developer provides similar
autocompletion for table and column names and even SQL statement GROUP BY and ORDER BY clauses.
Take a look at Figure 12-9 to see the autocomplete feature in action.

 CHAPTER 12 ORACLE SQL DEVELOPER

255

Figure 12-9. Autocomplete drop-down list

Another feature that helps productivity is to use Oracle SQL Developer snippets. To learn more
about snippets, please see Recipe 12-7. Within the SQL worksheet toolbar, there is a group of buttons
that can be used to help increase programmer productivity. The group of buttons at the far-right side of
the toolbar contains a button for making highlighted words uppercase, lowercase, and initial-cap. The
button that has an eraser on it can be used to quickly clear the SQL worksheet. There is also button that
can be used to display the SQL History panel. This SQL History panel opens along the bottom of the
Oracle SQL Developer environment, and it contains all the SQL that has been entered into the
worksheet. Double-clicking any line of the history will automatically add that SQL to the current
worksheet. Figure 12-10 shows the SQL History window.

Figure 12-10. SQL History window

To execute the SQL or PL/SQL that is contained within the script, you can use the first two toolbar
icons. The first icon in the toolbar (as shown in Figure 12-8) is a green arrow will execute the code that is
in the worksheet and display the result in a separate pane. The second icon in the toolbar (as shown in
Figure 12-8) that resembles a piece of paper with a green arrow in front will execute the code within the
worksheet and then display the output in a pane that can be saved as script output.

CHAPTER 12 ORACLE SQL DEVELOPER

256

 Note It is possible to have more than one SQL statement or PL/SQL block within the SQL worksheet at the same

time. In doing so, only the highlighted code will be executed when the green arrow button is selected. If all the

code is selected, then a separate output pane will appear for the output of each block or statement. However, if

the Script icon (paper with green arrow) is selected, then all the highlighted code will have its output displayed in

the resulting script output pane.

Other toolbar options within the SQL worksheet include the ability to COMMIT or ROLLBACK changes
that are made, run an explain plan on the current code, or set up autotrace. The SQL worksheet is like
SQL*Plus with many additional features. It provides the power of many tools in one easy-to-use
environment.

12-5. Creating and Executing a Script

Problem
You are interested in creating a PL/SQL script using Oracle SQL Developer that will run against your
database. Once it has been created, you want to save it and then execute it.

Solution
Establish a connection to the database for which you want to create a script. By default, the SQL
worksheet for the selected database will open. To create a script, choose New from the File menu or
select the first icon on the left side of the toolbar that resembles a piece of paper with a plus sign. Next,
select the SQL File option from the Create a New window. When the Create SQL File window opens, type
in a file name for your script, and choose a directory in which to store it. For the purposes of this
demonstration, choose the file name select_employees, browse and choose the desired storage location,
and click OK. At this point, a new tab opens in the Oracle SQL Developer editor. This tab represents the
SQL file you have just created. Type the following script into the editor for demonstration purposes:

DECLARE
 CURSOR emp_cur IS
 SELECT * FROM employees;

 emp_rec emp_cur%ROWTYPE;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' || emp_rec.last_name);
 END LOOP;
END;

After the script has been typed into the editor, your Oracle SQL Developer editor should resemble

that shown in Figure 12-11. Save your script by clicking the Save icon that looks like a disk, or choose
Save from the File menu.

 CHAPTER 12 ORACLE SQL DEVELOPER

257

Figure 12-11. Typing a script into the SQL editor

To execute the script, click the Run Script icon that is the second icon from the left above the editor,
or press the F5 function key. You will be prompted to select a database connection. At this point, you can
choose an existing connection, create a new connection, or edit an existing connection. Choose the
database connection that coincides with the schema for this book. Once you select the connection, the
script will execute against the database, and you will see another pane appear in the lower half of the
Oracle SQL Developer window. This is the Script Output pane, and you should see a message that states
“anonymous block completed.” The editor should now look like Figure 12-12.

Figure 12-12. Anonymous block completed

How It Works
In the solution to this recipe, you learned how to create and execute a script using Oracle SQL
Developer. As you were typing the script, you may have noticed that the text being typed is color-coded.
Oracle SQL Developer places PL/SQL and SQL keywords into a different color text that can be chosen
from within the preferences window, which is located within the Tools menu. The default color for
keywords is blue.

When the script is executed, it prompts for a database connection to use. Once that connection has
been selected and established, then the script is run against the database. The script may not display any

CHAPTER 12 ORACLE SQL DEVELOPER

258

useful results by default, unless the SERVEROUTPUT has been enabled via the Dbms Output pane. To learn
more about enabling DBMS_OUTPUT, please see Recipe 12-3.

When you select the Save option, the script is written to disk to a file having the name you specified
earlier. To execute a saved script, open the File menu, and then select the Open option. A dialog box will
open that allows you to browse your file system for the script that you want to open. Once you have
found the script and opened it, a new tab is opened, and the script is loaded into that tab along with all
the options of an ordinary SQL worksheet (see Figure 12-13).

Figure 12-13. Loaded script

12-6. Accepting User Input for Substitution Variables

Problem
You want to create a PL/SQL application that accepts user input from the keyboard. To test the input,
you want to have Oracle SQL Developer prompt you for input.

Solution
Use an ampersand in front of a text string just like in SQL*Plus. Assign the resulting user variable to a
PL/SQL variable, or use the value inline.

How It Works
Just as SQL*Plus treats the ampersand as a token to denote user input, Oracle SQL Developer does the
same. When an ampersand is encountered, Oracle SQL Developer will display a pop-up box to prompt
the user for the input. For example, type or copy and paste the following code into the SQL worksheet,
and then select the Run Statement toolbar button.

DECLARE
 email VARCHAR2(25);
BEGIN
 SELECT email
 INTO email
 FROM employees
 WHERE employee_id = &emp_id;

 DBMS_OUTPUT.PUT_LINE('Email Address for ID: ' || email);

 CHAPTER 12 ORACLE SQL DEVELOPER

259

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An unknown error has occured, please try again.');
END;

When the code is executed, you will be prompted to provide a value for the emp_id variable. A

separate dialog box that looks like the one shown in Figure 12-14 is displayed.

Figure 12-14. Entering substitution variable

If the value being accepted from the user is a string, then the ampersand-variable must be placed
within single quotes. For example, &last_name would be used to prompt for user entry of a string value.

12-7. Saving Pieces of Code for Quick Access

Problem
You want to save a portion of code so that it can be made easily reusable by other PL/SQL programs.

 Tip This recipe also works for frequently used bits of SQL.

Solution
Use the Snippets window to create the reusable piece of code and use it for access at a later time.

How It Works
The Snippets window can be accessed by selecting the View menu and then choosing the Snippets
option. The Snippets window will open as a pane on the far-right side of the Oracle SQL Developer
environment. The pane consists of a toolbar that includes a button used for creating a new snippet and a
button for editing an existing snippet. There is also a drop-down menu that consists of several menu
options that organize each of the snippets into a different category. Figure 12-15 shows the Snippets
pane.

CHAPTER 12 ORACLE SQL DEVELOPER

260

Figure 12-15. Snippets

The snippet is used by dragging its text onto a SQL worksheet or script. Once dragged onto the
worksheet, the actual code is displayed in a template fashion. In some cases, you will need to change a
bit of the text to make it usable, but the reusable code that is provided by the snippet can greatly reduce
development time.

You can add your own snippet by selecting the icon that resembles a piece of paper with a plus sign
on it from the Snippets panel. This opens the Save Snippet window (as shown in Figure 12-16) that gives
you the option of using one of the existing categories or typing a new one. You can also type a name and
tooltip for the snippet. The name of the snippet will appear in the Snippets panel after it has been saved.
The text of the snippet itself will be placed into the worksheet once you drag the name of your snippet to
a worksheet or script.

Figure 12-16. Save Snippet pane

 CHAPTER 12 ORACLE SQL DEVELOPER

261

The Edit Snippet icon (the one with the pencil through it) brings up another window that allows you
to choose an existing snippet to edit, create a new snippet, or delete a snippet. Only those snippets that
you have created are available for editing. Figure 12-17 displays the Edit Snippets window.

Figure 12-17. Edit Snippets window

The snippets are actually saved within an XML file named UserSnippets.xml. This file is located in
your user sqldeveloper directory. This file can be transported to another machine and placed into the
sqldeveloper directory so that the snippets can be made available in more than one place. This can be
useful if you have a group of developers who may want to share snippets. The ability to copy the
UserSnippets.xml file into other user sqldeveloper directories and make the snippets available to other
users can certainly be advantageous.

Snippets can be useful for saving the time of typing a SQL or PL/SQL construct. They can also be
beneficial if you do not remember the exact syntax of a particular piece of code. They provide quick
access to template-based solutions.

12-8. Creating a Function

Problem
You want to create a function using Oracle SQL Developer.

Solution
You can manually create the function by typing the code into the SQL worksheet for the database
connection for which you want to create. You can also use the Create Function Wizard within Oracle
SQL Developer to provide some assistance throughout the function creation process. There are a couple

p

CHAPTER 12 ORACLE SQL DEVELOPER

262

of different ways to invoke the Create Function Wizard. If you go to the File menu and select New, the
Create a New window opens, and Function is one of the available options. You can also reach the same
menu by selecting the New toolbar button. Both of these paths will lead you to the same window
because after clicking OK, the Create PL/SQL Function window will appear (Figure 12-18).

Figure 12-18. Create PL/SQL Function window

A final way to invoke this same window is to establish a database connection and then expand the
connection navigator to list all subfolders and then right-click the Functions subfolder. One of the
available options after doing so will be New Function.

How It Works
If using the SQL worksheet to create a function, you will need to type the code for creating your function
into the editor and then click the Run button to compile and save the object. If any errors are
encountered while compiling, they will appear in the Messages window along with the line number that
they occurred on. The SQL worksheet works very well for those who are well accustomed to creating
functions. The Create Function Wizard may be the best choice for creating a function or those who like
to write less code.

 Note Using the Connections pane, you are able to browse both valid and invalid objects. An object may become

invalid if it is not compilable, becomes stale, or because of issues with other dependencies.

Once within the Create PL/SQL Function window, you will be able to name the function and specify
any parameters that will need to be used. The first parameter in the list is already defined by default, and
it represents the function’s return value. You can change the return type by selecting from the list of
datatype options within the Type column of the parameter listing.

 CHAPTER 12 ORACLE SQL DEVELOPER

263

To add a new parameter, click the plus symbol on the right side of the window, and a new line will
be added to the parameter-listing table. You can then populate the name of the parameter, select a
datatype and mode, and designate a default value if one should exist. After all parameters have been
declared, click the OK button to continue.

The function editor window will open, and it will contain the code that needs to be used for creation
of the function that you have defined. All that is left to code will be any declarations and then the actual
function code. The editor window contains a toolbar of options along with several tabs that can be used
to find out more information about a function once it has been created (Figure 12-19).

Figure 12-19. The Function Editor window

The remaining function declarations and code should be typed into the editor, and when
completed, the Save toolbar button or menu option can be used to compile and save the function into
the database. If there are compilation errors upon saving, the errors will be displayed in a Compiler – Log
window along with the line number on which the error occurred. By clicking the error in the window,
your cursor will be placed on the line of code that needs to be repaired. Figure 12-20 shows the Compiler
– Log window including a reference to an error in the code.

Figure 12-20. Compilation errors in Function Editor

Once you have successfully compiled and saved the function into the database, it can be executed
for testing purposes using the green arrow icon within the Function Editor window. When you execute

CHAPTER 12 ORACLE SQL DEVELOPER

264

the function, the Run PL/SQL window will be displayed. If you defined any parameters for the function,
you can supply values for them within the PL/SQL Block portion of the window. You can then click OK to
execute the function using the value(s) you have defined within the window, and the results will be
displayed in the Run Log window. The Run PL/SQL window can also be used to save your test case to a
file or restore a test case from disk. The test case incorporates all the text that is contained within the
PL/SQL block portion of the Run PL/SQL window. This window is displayed in Figure 12-21.

Figure 12-21. Run PL/SQL window

You can use the database navigator to display the functions contained within a particular database
connection. If you highlight a particular trigger and right-click it, then a menu containing several options
will be displayed. This is shown in Figure 12-22.

Figure 12-22. Using the navigator with functions

The options provided can be used for administering or editing the selected function. The Edit
option will open the Function Editor, and it will contain the code for the selected function. If the selected
function is not compiled successfully, then you can make changes to it and choose the Compile option

 CHAPTER 12 ORACLE SQL DEVELOPER

265

within the right-click contextual menu to recompile the code. Similarly, the menu can be used to invoke
the profiler, debug, or administer privileges for the function.

12-9. Creating a Stored Procedure

Problem
You want to create a stored procedure using Oracle SQL Developer.

Solution
You can manually create a stored procedure by typing the code for creating your procedure into a SQL worksheet
and executing it. You can also use the Create Procedure Wizard. To start the wizard, go to the File menu and
select the New option. Once the Create a New dialog box opens (Figure 12-23), select Procedure.

Figure 12-23. Create a New dialog box

Once you click OK, you will be prompted to select a database connection. Doing so will open the
Create PL/SQL Procedure Wizard. Alternatively, you can connect to the database of your choice and
then expand the navigator so that all the objects within the database are available. Right-click the
Procedures submenu, and select New Procedure, as shown in Figure 12-24.

Figure 12-24. Right-click the Procedures submenu within a designated database connection.

e

CHAPTER 12 ORACLE SQL DEVELOPER

266

How It Works
You can use the Create a New Wizard or SQL worksheet to create a new stored procedure. The wizard is
best suited for those who are new to PL/SQL or not very familiar with the overall syntax for creating a
stored procedure. To use the wizard, select the File menu followed by the New option. At this point, you
will be presented with the Create a New window that allows several options for creating new database
objects or code. Select the Procedure option, and click OK. Oracle SQL Developer will now prompt you
to select a database connection for which you will create the stored procedure. Select the connection of
your choice, and click OK. The Create PL/SQL Procedure window will open, and it will resemble Figure
12-25.

Figure 12-25. Create PL/SQL Procedure window

The Create PL/SQL Procedure window provides a window that can be used to create a procedure.
You can select a schema and name the procedure. There is a check box that allows you to create your
code using all lowercase if you want. Using the green plus symbol on the right side of the window, you
can add a row of text to the Parameters window. By default, the parameter will be named PARAM1, and it
will be given a datatype of VARCHAR2 with a mode of IN. All of these options can be changed, including the
name. You can add zero or more parameters to the list, and you can rearrange their order by selecting a
parameter from the list and using the arrow buttons on the right side of the window. You can select the
DDL tab to see the actual code for creating the stored procedure, along with all the parameters you have
defined. When finished, you can optionally choose to save your code to disk using the Save button and
then click OK to create the procedure.

Once you have completed and saved the Create PL/SQL Procedure form, the code is transferred to a
SQL worksheet that is a procedure editor that contains buttons and tabs for working with the stored
procedure, as shown in Figure 12-26.

 CHAPTER 12 ORACLE SQL DEVELOPER

267

Figure 12-26. Stored Procedure Wizard

The worksheet contains six tabs that can be used to find out more information about the stored
procedure that it contains. This information includes the grants that have been made on the procedure.
Other information includes dependencies, references, details, and profiles. You can add code to the
procedure by typing into the editor. The editor will perform autocompletion where appropriate, and
snippets can be dragged into the editor.

Next, copy the following procedure into the editor for testing purposes:

CREATE OR REPLACE PROCEDURE INCREASE_WAGE
(
 EMPNO_IN IN NUMBER,
 PCT_INCREASE IN NUMBER
) AS
 emp_count NUMBER := 0;
 Results VARCHAR2(50);
BEGIN

 SELECT count(*)
 INTO EMP_COUNT
 FROM EMPLOYEES
 WHERE employee_id = empno_in;

 IF emp_count > 0 THEN
 UPDATE EMP
 SET salary = salary + (salary * PCT_INCREASE)
 WHERE employee_id = empno_in;
 Results := 'SUCCESSFUL INCREASE';
 ELSE
 Results := 'NO EMPLOYEE FOUND';
 END IF;

 DBMS_OUTPUT.PUT_LINE(RESULTS);
END;

Once the procedure has been coded, select the Save option from the File menu, or click the Save

icon that contains an image of a disk. This will compile and store the procedure into the database. You
can alternatively use the Gears button to compile and save, which will produce the same results. If any
compilation errors are found, they will be displayed in a pane below the editor along with the line
number on which the error was found (Figure 12-27).

CHAPTER 12 ORACLE SQL DEVELOPER

268

Figure 12-27. Compilation errors

If you double-click the error message, the cursor will be placed into the line of code that contains
the error. In this case, you can see that the EMP table does not exist. Replace it with EMPLOYEES, and then
click the Save button again. The procedure should now be successfully compiled and saved into the
database. If you select the Refresh icon above the navigator, the new procedure will appear within the
list of procedures for the database connection.

To execute the procedure, right-click it within the navigator, and choose the Run option; this will
cause the Run PL/SQL window to open. This window is shown in Figure 12-28.

Figure 12-28. Run PL/SQL procedure window

At this point, you have the option to save the file to disk or open another SQL file. If you want to test
the procedure, then you can assign some values to the parameters within this window. Assign the values
directly within the code that is listed in the PL/SQL Block section of the Run PL/SQL window. When you
click OK, then the procedure will be executed. The results of the execution will be displayed in the log
pane that is located below the editor pane.

12-10. Creating a Package Header and Body

Problem
You want to create a package and store it into the database using Oracle SQL Developer.

Solution
Use the Create Package Wizard, or type the PL/SQL package code into a SQL worksheet. To start the
wizard, go to the File menu, and select the New option. Once the Create a New dialog box opens, select
Package, as shown in Figure 12-29.

 CHAPTER 12 ORACLE SQL DEVELOPER

269

Figure 12-29. Creating a new package

Once you click OK, you will be prompted to select a database connection. This will open the Create
PL/SQL Package Wizard. Alternatively, you can connect to the database of your choice and then expand
the navigator so that all the objects within the database are available. Right-click (Ctrl+click) the
Packages submenu and select New Package.

How It Works
Creating a new package with Oracle SQL Developer is much the same as creating other code objects
using this tool. You can develop using the manual technique of writing all code using the SQL worksheet,
or you can use the creation wizards that are provided by the tool. You can type the example code into a
SQL worksheet for your data connection and click the Run Statement toolbar button to compile and save
the package into the database. You can also issue a Save As and save the code to a file on your
workstation when writing code using the SQL worksheet.

Alternatively, the wizard is useful for quickly creating the standard code for a package, and you can
use the editor to add the details that are specific to your package. Once you have opened the New
Package Wizard, you will be prompted to enter a package name. For the purposes of this recipe, enter
the name PROCESS_EMPLOYEE_TIME, and click OK. If there is an existing object that has the same name,
then you will be alerted via a red pop-up message (Figure 12-30).

Figure 12-30. Naming the PL/SQL package using creation wizard

CHAPTER 12 ORACLE SQL DEVELOPER

270

 Note If you want to enter all code in lowercase for readability within the tool, you can select the check box

before clicking OK once the package has been named. PL/SQL is not a case-sensitive language, so case does not

affect code execution.

After proceeding, the package editor is opened, and it contains some standard package creation
code using the name that you placed into the wizard. As you can see from Figure 12-31, the package
editor contains several tabs, along with a search bar and Run, Debug, Compile, and Profile buttons.
Enter the following example code into the text box on the Code tab:

CREATE OR REPLACE PACKAGE process_employee_time IS
 total_employee_salary NUMBER;
 PROCEDURE grant_raises(pct_increase IN NUMBER);
 PROCEDURE INCREASE_WAGE (empno_in IN NUMBER,
 Pct_increase IN NUMBER) ;
END;

Figure 12-31. Package editor window

Click the Save button to compile and store the package into the database. Once this has been
completed, then the package header should be successfully stored in the database. Next, a package body
will need to be added in order to make the package functional. This can be done by expanding the
Package subfolder within the navigator. Once expanded, select the package for which you want to create
a body. Right-click the selected package, and select the Create Body option (Figure 12-32).

Figure 12-32. Creating a package body

 CHAPTER 12 ORACLE SQL DEVELOPER

271

Next, the standard package body creation code will be added to an editor much like the SQL
worksheet. You can now edit this code accordingly to ensure that it performs the correct actions. Type
the following package body into the editor, and then click the Save button to compile and store the
package body:

CREATE OR REPLACE PACKAGE BODY process_employee_time AS
 PROCEDURE grant_raises (
 pct_increase IN NUMBER) as
 CURSOR emp_cur is
 SELECT employee_id
 FROM employees;
 BEGIN
 FOR emp_rec IN emp_cur LOOP
 increase_wage(emp_rec.employee_id, pct_increase);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('All employees have received the salary increase');
 END grant_raises;

 PROCEDURE increase_wage (
 empno_in IN NUMBER,
 Pct_increase IN NUMBER) as
 Emp_count NUMBER := 0;
 Results VARCHAR2(50);
BEGIN
 SELECT count(*)
 INTO emp_count
 FROM employees
 WHERE employee_id = empno_in;

 IF emp_count > 0 THEN
 UPDATE employees
 SET salary = salary + (salary * pct_increase)
 WHERE employee_id = empno_in;

 SELECT salary
 INTO total_employee_salary
 FROM employees
 WHERE employee_id = empno_in;

 Results := 'SUCCESSFUL INCREASE';
 ELSE
 Results := 'NO EMPLOYEE FOUND';
 END IF;
 DBMS_OUTPUT.PUT_LINE(results);

 END increase_wage;
END process_employee_time;

If any compilation errors are encountered, an error window will be displayed providing the line

number and specific error message that needs to be addressed. After any compile errors are repaired, the
package body will be successfully created. You can then use the navigator to expand the package name
and see the package body listed within it. Right-clicking the package body in the navigator offers some

CHAPTER 12 ORACLE SQL DEVELOPER

272

options such as Edit, Run, Compile, Profile, and Debug. You will learn more about debugging in Recipe
12-12. The Edit option will open the package body editor if it is not already open. The Run option will
open the Run PL/SQL window, which allows you to select a procedure or function to execute from the
chosen package (Figure 12-33).

Figure 12-33. Running the PL/SQL package

Once a function or procedure is chosen from the Run PL/SQL window, it is executed using the
values that are assigned to the variables within the PL/SQL Block panel of the window (this code is
automatically generated by SQL*Developer). These values can be changed prior to running the package
by editing the code that is displayed within the panel. This window also provides the opportunity to save
the code to a file or load code from an existing file.

Oracle SQL Developer makes developing PL/SQL packages easy. All the tools that are needed to
successfully create, edit, and manage packages are available within the environment. Whether you are a
beginner or seasoned expert, these tools will make package development and maintenance a breeze.

12-11. Creating a Trigger

Problem
You need to create a DML database trigger that validates data prior to inserting it into a table, and you
want to use Oracle SQL Developer to do so. For instance, you want to create a trigger that will validate an
e-mail address prior to inserting a row into the EMPLOYEES table.

Solution
Use the Create Trigger Wizard, type the PL/SQL trigger code into a SQL worksheet, or use the trigger
options that are available from the database table worksheet. To start the wizard, go to the File menu
and select the New option. Once the Create a New dialog box opens, select Trigger. This will open the
Create Trigger window, as shown in Figure 12-34.

 CHAPTER 12 ORACLE SQL DEVELOPER

273

Figure 12-34. Creating a new trigger

The Create Trigger window simplifies the process of creating a trigger because it provides all the
essential details that are required up front. Once the information has been completed, the trigger code
can be developed using the trigger editor window.

How It Works
As with all the other code creation techniques available in Oracle SQL Developer, there are various
different ways to create a trigger. Using the SQL worksheet for a database connection is the best way to
manually create a trigger. To do so, you will need to open the SQL worksheet, type the trigger creation
code, and click the Run toolbar button to compile and save the code. The many wizards that are
available for trigger creation can greatly simplify the process, especially if you are new to PL/SQL or rusty
on the details of trigger creation.

As mentioned in the solution to the recipe, the Create Trigger window allows you to specify all the
details for creating a trigger. You choose the type of trigger by selecting one of the options available from
the drop-down menu. Different options become available in the window depending upon the type of
trigger you choose to create. By default, a table trigger is chosen. Using that option, you can select the
table from another drop-down list and choose whether the trigger should be executed on INSERT, UPDATE,
or DELETE from the specified table. The wizard allows you to specify your own variable names for
representing old and new table values. The timing for trigger execution is determined by selecting
Before, Statement Level, After, or Row Level and specifying an optional WHEN clause. You can even specify
whether the trigger is to be executed based upon a specific column.

If you attempt to enter a trigger name that matches an existing object in the database within the
specified schema, you will receive an error message, as shown in Figure 12-35.

CHAPTER 12 ORACLE SQL DEVELOPER

274

Figure 12-35. Create Trigger window–—object already exists

After finishing with the Create Trigger Wizard and clicking the OK button, the initial trigger creation
code will be displayed in an editor (Figure 12-36).

Figure 12-36. Trigger Editor

Type the following code into the editor, and hit the Save button to compile the code and save it into
the database:

TRIGGER CHECK_EMAIL_ADDRESS
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
 IF NOT INSTR(:new.email,'@') > 0 THEN
 RAISE_APPLICATION_ERROR(-20001, 'INVALID EMAIL ADDRESS');
 END IF;
END;

 CHAPTER 12 ORACLE SQL DEVELOPER

275

The Save button will automatically compile the code, and the output will appear in the Messages
pane below the editor, as shown in Figure 12-37.

Figure 12-37. Messages log

After the trigger has been successfully compiled and stored into the database, it can be highlighted
in the navigator, and right-clicking it will reveal several options (Figure 12-38).

Figure 12-38. Trigger options

These options help allow easy access for dropping, disabling, or enabling the trigger. Choosing the
Edit option from this submenu will open the trigger in the editor window to allow for code
modifications.

Using the Create Trigger Wizard in Oracle SQL Developer can greatly reduce the time it takes to
create a database trigger. By selecting the appropriate options within the wizard, you will be left with
only the trigger functionality to code.

CHAPTER 12 ORACLE SQL DEVELOPER

276

12-12. Debugging Stored Code

Problem
One of your stored procedures contains logical errors, and you want to use Oracle SQL Developer to help
you find the cause.

Solution
A few different options are available for debugging stored code within Oracle SQL Developer. The
environment includes a complete debugger that provides the ability to set breakpoints within the code
and modify variable values at runtime to investigate a problem with your code. There are several ways to
invoke the debugger for a particular piece of code. When a code object is opened within the editor, the
toolbar will contain a red “bug” icon that can be used to invoke the debugger (Figure 12-39).

Figure 12-39. Debugger icon

The right-click contextual menu within the navigator also contains a Debug option for procedures
and packages (Figure 12-40).

Figure 12-40. Debugger option in Navigator

How It Works
Using the debugger is a great way to find issues with your code. The debugger enables the application to
halt processing at the designated breakpoints so that you can inspect the current values of variables and
step through each line of code so that issues can be pinpointed. Debugging PL/SQL programs is a
multistep process that consists of first setting breakpoints in code, followed by compiling the code for
debug, and lastly running the actual debugger. To use the debugger, the user who is running the
debugger must be granted some database permissions. The user must be granted the DEBUG ANY
PROCEDURE privilege to have debug capabilities on any procedure or DEBUG <procedure name> to allow
debugging capabilities on a single procedure. The DEBUG CONNECT SESSION privilege must also be granted
in order to allow access to the debugging session.

 CHAPTER 12 ORACLE SQL DEVELOPER

277

After a user has been granted the proper permissions for debugging, the next step is to place a
breakpoint (or several) into the code that will be debugged. For the purposes of this recipe, the
INCREASE_WAGE procedure will be loaded into the procedure editor, and a breakpoint will be set by
placing the mouse cursor on the left margin of the editor window next to the line of code that you want
the debugger to pause execution at. Once the cursor is in the desired location, click in the left margin to
place the breakpoint. Figure 12-41 shows a breakpoint that has been placed at the beginning of a SELECT
statement within the INCREASE_WAGE procedure.

Figure 12-41. Setting a breakpoint

After one or more breakpoints have been placed, the code needs to be compiled for debug. To do so,
use the icon in the editor toolbar for compiling, and select the Compile for Debug option. Once the code
has been compiled for debug, its icon in the navigator will adopt a green bug to indicate that it is ready
for debugging (Figure 12-42).

Figure 12-42. Code ready for debug

Next, the debugger can be started by selecting the debug icon within the editor or by right-clicking
the code within the navigator and selecting the Debug option. If the user who is debugging the code
does not have appropriate permissions to debug, then error messages such as those shown in Figure 12-
43 will be displayed.

Figure 12-43. User not granted necessary permissions

Assuming that the user has the correct permissions to debug, the Debug PL/SQL window will be
displayed. This window provides information about the code that is being debugged including the target

CHAPTER 12 ORACLE SQL DEVELOPER

278

name, the parameters, and a PL/SQL block that will be executed in order to debug the code. The code
that is contained within the PL/SQL block portion of the screen can be modified so that the parameters
being passed into the code (if any) can be set to the values you choose (Figure 12-44). In Figure 12-44,
the values have been set to an EMPNO_IN value of 10 and a PCT_INCREASE value of .03.

Figure 12-44. Debug PL/SQL window

Once the Debug PL/SQL window has been completed with the desired values, click OK to begin the
debugger. This will cause Oracle SQL Developer to issue the DBMS_DEBUG_JDWP.CONNECT_TCP (hostname,
port) command and start the debugging session. The debugger will start, and it will provide a number of
different options, allowing you to step through the code one line at a time and see what the variable
values are at any given point in time. You will see three tabs on the debugger: Data, Smart Data, and
Watches. The Data tab is used for watching all the variables and their values as you walk through your
code using the debugger. The Smart Data tab will keep track of only those variables that are part of the
current piece of code that is being executed. You can set watches to determine which variables that you
would like to keep track of. The inspector can be used to see the values within those variables you are
watching. You are also given the very powerful ability to modify the values at runtime as the code is
executing. This provides the capability of determining how code will react to different values that are
passed into it.

The Oracle SQL Developer debugger is a useful tool and provides an intuitive user interface over the
DBMS_DEBUG_JDWP utility. Although this recipe covers only the basics to get you started, if you spend time
using each feature of the debugger, then you will learn more powerful ways to help you maintain and
debug issues found in your code.

12-13. Compiling Code Within the Navigator

Problem
You want to compile some PL/SQL code within Oracle SQL Developer. In this solution, the navigation
menu of your Oracle SQL Developer environment contains code that has a red X on it. This means the
code needs to be compiled or that it contains an error.

 CHAPTER 12 ORACLE SQL DEVELOPER

279

Solution
Select the code that needs to be compiled, and right-click (Ctrl+click) it. A menu will be displayed that
lists several options. Select the Compile option from that menu (Figure 12-45).

Figure 12-45. Compile option

How It Works
The Oracle SQL Developer navigation menu is very handy for quickly glancing at the code that a
database contains. All the code that is successfully loaded into the database will contain a green check
mark, whereas any code that has a compilation error will contain a red X label. Sometimes code needs to
simply be recompiled in order to validate it and make it usable once again. This is most often the case
after a database has just recently been migrated or updated. This can also occur if a particular piece of
code depends upon another piece of code that has recently been modified, although Oracle Database
11gR2 includes fine-grained dependencies that help alleviate this issue. Another event that may cause
code to require recompilation is if an object that the code references such as a table or view has been
changed. Whatever the case, Oracle SQL Developer makes it easy to recompile code by right-clicking it
within the navigator and selecting Compile from the pop-up menu.

 Note Oracle Database 11g introduced the idea of fine-grained dependencies. This allows PL/SQL objects to

remain valid even if an object that they depend upon has changed, as long as the changes do not affect the

PL/SQL object. For instance, if a column has been removed from a table and object A depends upon that table but

not the specific column that was removed, then object A will remain valid.

Once the compile task has been completed, a message will be displayed within the Messages panel to
note whether the compilation was successful. If there were any issues encountered, they will be listed,
each on a separate line, within the Messages window. The messages will contain the error code, as well
as the line number that caused the exception to be raised. Double-clicking each error message will take
you directly to the line of code that raised the exception so that you can begin working on repairs.

C H A P T E R 13

281

Analyzing and Improving
Performance

This chapter introduces several methods to help you analyze your code to improve its performance in
terms of runtime or memory usage. Many recipes use the DBMS_PROFILE package, which is supplied by
Oracle, to help in the analysis. It is a useful tool for identifying which lines of code consume the most
execution time.

13-1. Installing DBMS_PROFILER

Problem
You want to analyze and diagnose your code to find bottlenecks and areas where excess execution time
is being spent, but the DBMS_PROFILER package is not installed.

Solution
Install the DBMS_PROFILER packages, and then create the tables and the Oracle sequence object they need
in order to run. Once installed, you can use the DBMS_PROFILER package to help diagnose application
performance issues.

Installing the Packages

To install the DBMS_PROFILER packages, follow these steps:

The packages are owned by the SYS account; therefore, it requires DBA login
access. Start by opening a SQL Plus connect with the connect sys command. If
the operation is successful, the system will respond with the message
“Connected.”

connect sys/sys_pwd as sysdba
Connected.

Once connected, run the profload.sql script that can be found within the
RDBMS/ADMIN directory contained in your Oracle Database home. The system
will respond with a series of messages like those shown next.

@[Oracle_Home]/RDBMS/ADMIN/profload.sql

You should see the following output after executing the script:

CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

282

Package created.
Grant succeeded.
Synonym created.
Library created.
Package body created.
Testing for correct installation
SYS.DBMS_PROFILER successfully loaded.
PL/SQL procedure successfully completed.

Finally, enter the grant execute command to ensure that all schemas within the
database have access to the DBMS_PROFILER package.

grant execute on DBMS_PROFILER to PUBLIC;
Grant succeeded.

Creating the Profiler Tables and Sequence Object

Create the tables and Oracle sequence object you need for the profiler to run. Log into the account that
wants to use the profiler, and enter the following. The system will respond as follows:

@[Oracle_Home]/RDBMS/ADMIN/proftab.sql

How It Works
The first step creates the packages and makes them available for public access. The second creates the
required tables in the schema that wants to use the profiler. There are alternatives to this installation
method based on needs and preferences.

The DBA may, for example, want to grant execution privileges to specific users instead of everyone.
Step 2 must be repeated for every user who wants to use the profiling tools. An alternative is for the DBA
to create public synonyms for the tables and sequence created, thereby having only one copy of the
profiler table, in which case the solution changes as in the following example. In the following recipe,
replace [Oracle_Home] with the exact path used to install the database software on your system.

connect sys/sys_pwd as sysdba
@[Oracle_Home]/RDBMS/ADMIN/profload.sql
grant execute on DBMS_PROFILER to USER1, USER2, USER3;
@[Oracle_Home]/RDBMS/ADMIN/proftab.sql

CREATE PUBLIC SYNONYM plsql_profiler_data FOR plsql_profiler_data;
CREATE PUBLIC SYNONYM plsql_profiler_units FOR plsql_profiler_units;
CREATE PUBLIC SYNONYM plsql_profiler_runs FOR plsql_profiler_runs;
CREATE PUBLIC SYNONYM plsql_profiler_runnumber FOR plsql_profiler_runnumber;

 CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

283

13-2. Identifying Bottlenecks

Problem
You notice that a PL/SQL program is running slowly, and you need to identify what sections of the code
are causing it to perform poorly.

Solution
Use the DBMS_PROFILER routines to analyze the code and find potential bottlenecks. In the following
example, the profiler is used to collect statistics on a run of a program, and then a query displays the
statistics.

EXEC DBMS_PROFILER.START_PROFILER ('Test1', 'Testing One');
EXEC sync_hr_data; -- the procedure identifed has having a bottleneck
EXEC DBMS_PROFILER.FLUSH_DATA;
EXEC DBMS_PROFILER.STOP_PROFILER;

Now that the profile data is collected, you can query the underlying tables to see the results of the
analysis:

COL line# FORMAT 999
COL hundredth FORMAT a6

SELECT d.line#,
 to_char (d.total_time/10000000, '999.00') hundredth,
 s.text
FROM user_source s,
 plsql_profiler_data d,
 plsql_profiler_units u,
 plsql_profiler_runs r
WHERE r.run_comment = 'Test1' -- run_comment matches the text in START_PROFILER
AND u.runid = r.runid
AND u.unit_owner = r.run_owner
AND d.runid = r.runid
AND d.unit_number = u.unit_number
AND s.name = u.unit_name
AND s.line = d.line#
ORDER BY d.line#;

Here are the results of the previous query:

 1 .00 PROCEDURE sync_hr_data AS
 3 .00 CURSOR driver is
 4 11.58 SELECT *
 5 .00 FROM employees@hr_data;
 9 2.25 FOR recs IN driver LOOP
10 1.64 UPDATE employees
15 .01 END sync_hr_data;

CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

284

Here is the complete source code for the sync_hr_data procedure:

CREATE OR REPLACE PROCEDURE sync_hr_data AS

CURSOR driver IS
SELECT *
FROM employees@hr_data;

BEGIN

 FOR recs IN driver LOOP
 UPDATE employees
 SET first_name = recs.first_name
 WHERE employee_id = recs.employee_id;
 END LOOP;

END sync_hr_data;

How It Works
There are four steps necessary to collect statistics on a running procedure:

1. Call the DBMS_PROFILER.START_PROFILER routine to begin the process of
collecting statistics. The two parameters allow you to give the run a name and
a comment. Unique names are not required, but that will make it easier to
query the results later.

2. Execute the program you suspect has bottleneck issues; in this example, we
run the sync_hr_data program.

3. Execute DBMS_PROFILER.FLUSH_DATA to write the data collected to the profiler
tables.

4. Call the DBMS_PROFILER.STOP_PROFILER routine to, as the name implies, stop the
collection of statistics.

The query joins the profiler data with the source code lines to display executable lines and the
execution time, in hundredths of a second. The raw data stores time in nanoseconds. The query results
show three lines of code with actual execution time.

The SELECT statement from the program unit in question, in which Oracle must establish a remote
connection via a database link, consumes the majority of the execution time. The remainder of the time
is consumed by the FOR statement, which fetches each record from the remote database connection, and
the UPDATE statement, which writes the data to the local database.

Selecting records in the loop and then updating them causes the program to switch context between
PL/SQL and the database engine. Each iteration of the LOOP causes this switch to occur. In this example,
there were 107 employee records updated. The next recipe shows you how to improve the performance
of this procedure.

 CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

285

13-3. Speeding Up Read/Write Loops

Problem
You have identified a loop that reads and writes large batches of data. You want to speed it up.

Solution
Use a BULK COLLECT statement to fetch the target data records, and then use a FORALL loop to update the
local database. For example, suppose you want to speed up the sync_hr_data procedure demonstrated
in Chapter 11:

CREATE OR REPLACE PROCEDURE sync_hr_data AS

CURSOR driver IS
SELECT *
FROM employees@hr_data;

TYPE recs_type IS TABLE OF driver%ROWTYPE INDEX BY BINARY_INTEGER;
recs recs_type;

BEGIN

 OPEN driver;
 FETCH driver BULK COLLECT INTO recs;
 CLOSE driver;

 FORALL i IN 1..recs.COUNT
 UPDATE employees
 SET first_name = recs(i).first_name
 WHERE employee_id = recs(i).employee_id;

END sync_hr_data;

Run the profiler procedures to collect additional statistics:

EXEC DBMS_PROFILER.START_PROFILER ('Test2', 'Testing Two');
EXEC sync_hr_data;
EXEC DBMS_PROFILER.FLUSH_DATA;
EXEC DBMS_PROFILER.STOP_PROFILER;

Query the underlying tables to see the results of the analysis:

COL line# FORMAT 999
COL hundreth FORMAT A6

SELECT d.line#,
 TO_CHAR (d.total_time/10000000, '999.00') hundreths,
 s.text

CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

286

FROM user_source s,
 plsql_profiler_data d,
 plsql_profiler_units u,
 plsql_profiler_runs r
WHERE r.run_comment = 'Test2'
AND u.runid = r.runid
AND u.unit_owner = r.run_owner
AND d.runid = r.runid
AND d.unit_number = u.unit_number
AND s.name = u.unit_name
AND s.line = d.line#
ORDER BY d.line#;

 1 .00 PROCEDURE sync_hr_data AS
 3 .00 CURSOR driver is
 4 11.54 SELECT *
 5 .00 FROM employees@hr_data;
12 .00 OPEN driver;
13 1.61 FETCH driver BULK COLLECT INTO recs;
14 .01 CLOSE driver;
16 1.15 FORALL i IN 1..recs.COUNT
21 .00 END sync_hr_data;

How It Works
The procedure is updated from the previous recipe to use a BULK COLLECT statement to gather the data
into a collection. The update statement uses the FORALL command to pass the entire collection of data to
the Oracle engine for processing rather than updating one row at a time. BULK COLLECT and FORALL loops
pass the entire dataset of the collections to the database engine for processing, unlike the loop in recipe
13-2, where each iteration passes only one record at a time from the collection to the database. The
constant switching back and forth between PL/SQL and the database engine creates unnecessary
overhead.

Perform the following steps to collect statistics on the update procedure:

1. Run the DBMS_PROFILER.START_PROFILER routine to begin the process of
collecting statistics. You use the two parameters of the routine to give the run a
name and to post a comment. Unique names are not required, but doing so
will make it easier to query the results later.

2. Run the sync_hr_data program to collect statistics.

3. Run the DBMS_PROFILER.FLUSH_DATA procedure to write the data collected to the
tables.

4. Run the DBMS_PROFILER.STOP_PROFILER routine to, as the name implies, stop
the collection of statistics.

The query joins the profiler data, using the run name of Test2, with the source code lines to display
executable lines and the execution time, in hundredths of a second. The raw data stores time in
nanoseconds. The query results show three lines of code with actual execution time.

Comparing these results with the previous recipe, we note a 28 percent improvement, 2.25 to 1.61,
in fetching the records via the BULK COLLECT statement, and a 30 percent improvement, 1.64 to 1.15, in
the writing of the records via the FORALL statements. This improvement is realized while processing only

 CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

287

107 records. Greater gains can be realized with larger data sets, especially when selecting records via a
remote database link as there are fewer context switches between PL/SQL and the Oracle engine.

13-4. Passing Large or Complex Collections as OUT Parameters

Problem
You have a procedure or function that accepts one or more large or complex collections that are also OUT
parameters, and you need a more efficient method to pass these variables.

Solution
Pass the parameters to your procedure or function by reference using the NOCOPY option on the
procedure or function declaration.

CREATE OR REPLACE PACKAGE no_copy_test AS

 TYPE rec_type IS TABLE OF all_objects%ROWTYPE INDEX BY BINARY_INTEGER;
 PROCEDURE test;

END no_copy_test;
/
show error

CREATE OR REPLACE PACKAGE BODY no_copy_test AS

PROCEDURE proc1 (rec_list IN OUT rec_type) IS
BEGIN
 FOR i IN 1..rec_list.COUNT LOOP
 rec_list(i) := rec_list(i);
 END LOOP;
END;

PROCEDURE proc2 (rec_list IN OUT NOCOPY rec_type) IS
BEGIN
 FOR i IN 1..rec_list.COUNT LOOP
 rec_list(i) := rec_list(i);
 END LOOP;
END;

PROCEDURE test IS

CURSOR driver IS
SELECT *
FROM all_objects;

recs rec_type;
rec_count integer;

BEGIN

CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

288

 OPEN driver;
 FETCH DRIVER BULK COLLECT INTO recs;
 CLOSE driver;

 rec_count := recs.COUNT;

 DBMS_OUTPUT.PUT_LINE (systimestamp);
 proc1 (recs); -- parameter passed by value
 DBMS_OUTPUT.PUT_LINE (systimestamp);
 proc2 (recs); -- paramter passed by reference
 DBMS_OUTPUT.PUT_LINE (systimestamp);
END test;

END no_copy_test;

set serverout on -- Enable output from DBMS_OUTPUT statements
EXEC no_copy_test.test;

Running the procedure produced the following output:

03-NOV-10 05.05.14.865000000 PM -05:00
03-NOV-10 05.05.14.880000000 PM -05:00
03-NOV-10 05.05.14.880000000 PM -05:00

How It Works
The recipe utilizes the NOCOPY feature within PL/SQL. It begins by defining two procedures within the test
package. The first procedure, PROC1, accepts a collection of records using the default parameter-passing
method, which is by VALUE. The second procedure, PROC2, is an exact copy of PROC1; however, its
parameter is passed using the NOCOPY option. In PROC1, the parameter is passed in by VALUE, which means
a copy of the entire collection is created in the REC_LIST variable within PROC1. In PROC2, the parameter
data is passed by REFERENCE. Passing a parameter by reference does not copy the data; rather, it uses the
existing data structure passed to it by the calling program. This method is more efficient for very large
collections in both running time and in memory usage.

The output from the test shows the first procedure, which passed its parameter by VALUE took longer
to run than the second procedure, which passed its parameter by REFERENCE. In this example, the
USER_OBJECTS table was used as the data for the parameter, which retrieved only 6,570 records. Larger
performance gains can be realized with more records and more complex data structures.

13-5. Optimizing Computationally Intensive Code

Problem
You have computationally intensive code that you want to optimize to decrease its running time.

Solution
Recompile the package, procedure, or function in native mode using the NATIVE setting:

 CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

289

ALTER PACKAGE my_package COMPILE BODY PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;
ALTER PROCEDURE my_procedure COMPILE PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;
ALTER FUNCTION my_function COMPILE PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;

Here is an example of a computationally intensive procedure. It uses the factorial function from

Recipe 17-4.

CREATE OR REPLACE PROCEDURE factorial_test as

fact NUMBER;

BEGIN

 FOR i IN 1..100 LOOP
 fact := factorial(33);
 END LOOP;

END factorial_test;

 -- enable display of execution time
SET TIMING ON

 -- run the test
EXEC factorial_test

PL/SQL procedure successfully completed.
Elapsed: 00:00:01.18

Now, recompile the code using the NATIVE option and rerun the test, noting any change in running

time:

ALTER PROCEDURE factorial_test COMPILE PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;

EXEC factorial_test

PL/SQL procedure successfully completed.
Elapsed: 00:00:00.42

How It Works
The ALTER. . .COMPILE command invokes the compiler on the named object. The syntax differs slightly
when recompiling a PACKAGE body in that the BODY clause follows the COMPILE statement. The
PLSQL_CODE_TYPE=NATIVE clause compiles the code in NATIVE format, which runs faster than interpreted
code. The REUSE SETTINGS clause ensures the code will be recompiled in the same mode if it later
becomes invalid and requires automatic recompilation.

Native mode realizes the most benefit from computational intensive code; it has little effect on DML
statements (in other words, SELECT, INSERT, UPDATE, and DELETE). In the previous example, the factorial
function is called repeatedly to simulate a computationally intensive procedure. When the procedure is
compiled in the default, interpretive method, it completes its run in 1.18 seconds. When compiled in
NATIVE mode, it completes in 0.42 seconds. This is a 64 percent improvement in running time!

CHAPTER 13 ANALYZING AND IMPROVING PERFORMANCE

290

13-6. Improving Initial Execution Running Time

Problem
You have a procedure that you run frequently, and you want to improve its overall running time by
minimizing its startup time.

Solution
Use the DBMS_SHAPRED_POOL.KEEP procedure to keep a permanent copy of your code in the shared
memory pool. For example, the following statement pins the procedure my_large_procedure in the
database’s shared memory pool:

DBMS_SHARED_POOL.KEEP (
 Name => 'my_large_procedure',
 flag => 'P');

How It Works
The DBMS_SHARED_POOL.KEEP procedure permanently keeps your code in the shared memory pool. By
default, when PL/SQL code is executed, Oracle must first read the entire block of code into memory if it
isn’t already there from a previous execution. As additional procedures are executed, less recently used
code in the shared memory pool begins to age. If there isn’t sufficient free space in the shared memory
pool, older code is removed to make room.

If large procedures are run frequently and are aging out of the shared memory pool, then pinning
the procedure in the shared memory pool can improve performance by removing the overhead
necessary to reload the procedure again and again.

The first parameter of the DBMS_SHARED_POOL.KEEP procedure is the name of the object you want to
pin in the shared memory pool. The second parameter identifies the object type of the first parameter.
The most commonly used values for FLAG are as follows:

• P: The default, which specifies the object is a package, procedure, or function

• T: Specifies the object is a trigger

• Q: Specifies the object is a sequence
You must have execute privileges on the DBMS_SHARED_POOL package to pin your code. An account with
SYSDBA privileges must grant execute on DBMS_SHARED_POOL to your schema or to public.

C H A P T E R 14

291

Using PL/SQL on the Web

Oracle’s Application Server provides a powerful gateway that exposes your PL/SQL procedures to web
browsers. The gateway is defined using a Data Access Descriptor (DAD) that runs PL/SQL code as either
the user defined in the DAD or as the user running the web application.

Oracle provides a PL/SQL Web Toolkit, which is a set of procedures and functions that generate
HTML tags. In addition to making your code easier to read and manage, the toolkit sends the HTML
code through Apache directly to the client web browser.

The following recipes teach you how to write PL/SQL procedures that produce interactive web
pages. These recipes can be combined to create solutions for complex business applications.

14-1. Running a PL/SQL Procedure on the Web

Problem
You’d like to make your PL/SQL procedures accessible to users in a web browser via the Oracle
Application Server.

Solution
To run a PL/SQL procedure on the Web, you must first configure a Data Access Descriptor (DAD) within
the Oracle Application Server to define the connection information required between mod_plsql within
the Oracle Application Server and the Oracle database that holds the PL/SQL procedures you wish to
run. In this example the mod_plsql configuration file dads.conf (located in [Oracle_Home]\Apache\
modplsql\conf) is edited to define the DAD.

<Location /DAD_NAME>
 SetHandler pls_handler
 Order deny,allow
 Deny from all
 Allow from localhost node1.mycompany.com node2.mycompany.com
 AllowOverride None

 PlsqlDatabaseUsername ORACLE_SCHEMA_NAME
 PlsqlDatabasePassword PASSWORD
 PlsqlDatabaseConnectString TNS_ENTRY
 PlsqlSessionStateManagement StatelessWithResetPackageState
 PlsqlMaxRequestsPerSession 1000
 PlsqlFetchBufferSize 128
 PlsqlCGIEnvironmentList QUERY_STRING
 PlsqlErrorStyle DebugStyle

CHAPTER 14 USING PL/SQL ON THE WEB

292

</Location>

You may repeat the <Location> data for additional DADs as required; perhaps one DAD for every

major application. You must restart the Oracle Application Server for changes to the DAD configuration
file to take effect.

How It Works
To verify that your DAD is configured properly and will run your PL/SQL code, log into the Oracle
database defined in your DAD. The Oracle database account is defined in the PlsqlDatabaseUsername,
PlsqlDatabasePassword and PlsqlDatabaseConnectString statements. Next, compile the following test
procedure.

create or replace procedure test as
begin
 htp.p ('Hello World!');
end;

Finally, point your web browser to http://node_name/DAD_NAME/test. Where node_name is the

name of the machine where the Oracle Application Server is installed and DAD_NAME is the name assigned
your DAD in the <Location> tag within the mod_plsql configuration file and test is the name of the
PL/SQL procedure create for this test. Your browser should respond with the text “Hello World!”

The <Location> tag within the dads.conf file defines the equivalent of a virtual directory within
Apache. When a request reaches the Oracle iAS Apache web server containing the location name defined
in the DAD, the PL/SQL package or procedure specified in the remaining portion of the URL is executed.
For example, if the URL is http://node.my_company.com/plsqlcgi/employee.rpt, plsqlcgi is the
DAD_NAME, then employee is the package name and rpt is the procedure name. Calls to the PLSQL Web
Toolkit within the employee.rpt procedure send output directly to the client’s web browser.

The SetHandler directive invokes mod_plsql within Apache to handle requests for the virtual path
defined by the <Location> tag. This directive is required to run PL/SQL packages and procedures
through the Apache web server.

The next three directives restrict access to the virtual path to the nodes specified on the Allow from
line. To allow access from any web browser in the world, replace these three directives with the following
two.

• Order allow,deny

• Allow from all

The PlsqlDatabase directives define the connection information mod_plsql needs to log into the
database. If the PlsqlDatabasePassword directive is supplied, Apache will automatically log into the
database when requests from web clients are processed. The TNS_ENTRY is used to complete the login
information. If the PlsqlDatabasePassword directive is omitted, the Web browser prompts the user for a
username and password. The username entered by the user must exist in the database specified by the
TNS_ENTRY name and the user must have execute privileges to the requested procedure. The procedure
must be accessible to the ORACLE_SCHEMA_NAME specified in PlsqlDatabaseUsername. In other words, the
schema must own the procedure or, if owned by another schema, it must have execute privileges to the
procedure.

http://node_name/DAD_NAME/test
http://node.my_company.com/plsqlcgi/employee.rpt

 CHAPTER 14 USING PL/SQL ON THE WEB

293

14-2. Creating a Common Set of HTML Page Generation Procedures

Problem
Every web page you generate with a PL/SQL procedure requires a common HTML tag to start and
another to finish every web page, and you do not wish to repeat the code to add those tags in every
procedure you write for the Web.

Solution
Create a package that contains calls to the PL/SQL Web Toolkit procedures that produce the HTML code
necessary to properly display a well-formed,

1
 HTML web page. In this example a package is created with

two procedures, one to generate the HTML tags required to start a page and one to generate the closing
HTML tags to finish a page.

CREATE OR REPLACE PACKAGE common AS

 PROCEDURE header (title VARCHAR2);
 PROCEDURE footer;

END common;

CREATE OR REPLACE PACKAGE BODY common AS

PROCEDURE header (title VARCHAR2) IS

BEGIN

 htp.p ('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" ' ||
 '"http://www.w3.org/TR/REC-html40/loose.dtd">');
 htp.htmlOpen;
 htp.headOpen;
 htp.meta ('Content-Type', null, 'text/html;' ||
 owa_util.get_cgi_env('REQUEST_IANA_CHARSET'));
 htp.meta ('Pragma', null, 'no-cache');
 htp.Title (title);
 htp.headClose;
 htp.bodyOpen;
 htp.header (2, title);

END HEADER;

PROCEDURE footer IS

BEGIN

1
 A well-formed HTML web page conforms to the standards defined by The World Wide Web Consortium

(W3C). You can validate your HTML web pages at http://validator.w3.org/.

http://www.w3.org/TR/REC-html40/loose.dtd
http://validator.w3.org

CHAPTER 14 USING PL/SQL ON THE WEB

294

-- This is a great place to add legal disclaimers, about us, contact us, etc. links
 htp.hr; -- horizontal line
 htp.anchor ('http://www.mynode.com/legal_statement.html', 'Disclaimer');
 htp.anchor ('http://www.mynode.com/About.html', 'About Us');
 htp.bodyClose;
 htp.htmlClose;

END footer;

END common;

How It Works
Recipe 14-1 includes a test procedure to verify the DAD is setup correctly; however the test procedure
does not produce a well-formed HTML page. Here is the updated example from Recipe 14-1, this time
with calls to the common header and footer procedures.

create or replace procedure test as
begin
 common.header ('Test Page');
 htp.p ('Hello World!');
 common.footer;
end;

This procedure, when called from a web browser, produces the following HTML code.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/
TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" NAME="" CONTENT="text/html;WINDOWS-1252">
<META HTTP-EQUIV="Pragma" NAME="" CONTENT="no-cache">
<TITLE>Test Page</TITLE>
<BODY>
<H2>Test Page</H2>
Hello World!
</BODY>
</HTML>

The header routine generates the necessary opening HTML code to properly display a web page. It

begins by setting the document type, then sending the opening <HTML> and <HEAD> tags. It sets the
content-type to the character set defined in the Apache environment variable, which is retrieved using a
call to the PL/SQL Web Toolkit’s owa_util.get_cgi_env routine. The Pragma <META> tag tells the browser
not to store the page’s content in its internal cache. This is useful when the PL/SQL routine returns time-
sensitive data because the users need to see real-time data. The remaining code sets the title in the user’s
browser, opens the <BODY> tag and displays the title on the user’s web browser.

The footer routine closes the <BODY> and <HTML> tags. As stated in the code’s comments, this is a
good place to include any legal disclaimers or other useful text or links required for every web page
generated.

Oftentimes when creating an application, you will create several procedures that will make use of
the same code. You could copy the code throughout your procedures, but it is more efficient and safer to

http://www.mynode.com/legal_statement.html
http://www.mynode.com/About.html
http://www.w3.org/%EF%83%89TR/REC-html40/loose.dtd%00
http://www.w3.org/%EF%83%89TR/REC-html40/loose.dtd%00

 CHAPTER 14 USING PL/SQL ON THE WEB

295

write once and use in many different places. The creation of a common codebase that is accessible to
each PL/SQL object within a schema can be quite an effective solution for storing such code.

14-3 Creating an Input Form

Problem
You require a web page that accepts and processes data entered by users. The data should be collected
on the opening page and processed (stored in a table, used to update rows in a table, etc.) when the user
clicks the Submit button.

Solution
Create a package using the Oracle PL/SQL Web Toolkit to display a data entry form and process the
results. In this example a simple data entry form is created to collect employee information and send the
user’s input to a second procedure for processing.

■ Note See Recipe 14-2 for more information on the common package, which is used in this recipe.

CREATE OR REPLACE PACKAGE input_form AS

 null_array OWA_UTIL.IDENT_ARR;

 PROCEDURE html;
 PROCEDURE submit (emp_id VARCHAR2,
 gender VARCHAR2 DEFAULT NULL,
 options OWA_UTIL.IDENT_ARR DEFAULT null_array,
 comments varchar2);

END input_form;

CREATE OR REPLACE PACKAGE BODY input_form AS

PROCEDURE html IS

type options_type is varray(3) of varchar2(50);
options options_type := options_type ('I will attend the Team Meeting',
 'I will attend the social event',
 'I will attend the company tour');

BEGIN

 common.header ('Input Form');
 htp.formOpen ('input_form.submit', 'POST');

 htp.p ('Employee ID: ');

CHAPTER 14 USING PL/SQL ON THE WEB

296

 htp.formText ('emp_id', 9, 9);
 htp.br;

 htp.p ('Gender: ');
 htp.formRadio ('gender', 'M');
 htp.p ('Male');
 htp.formRadio ('gender', 'F');
 htp.p ('Female');
 htp.br;

 FOR i IN 1..10 LOOP
 htp.formCheckBox ('options', i);
 htp.p (options(i));
 htp.br;
 END LOOP;
 htp.br;

 htp.p ('COMMENTS: ');
 htp.formTextArea ('comments', 5, 50);
 htp.br;

 htp.formSubmit;
 htp.formClose;
 common.footer;

END html;

PROCEDURE submit (emp_id VARCHAR2,
 gender VARCHAR2 DEFAULT NULL,
 options OWA_UTIL.IDENT_ARR DEFAULT null_array,
 comments varchar2) is

BEGIN

 common.header ('Input Results');
 htp.bold ('You entered the following...');
 htp.br;

 htp.p ('Employee ID: ' || emp_id);
 htp.br;
 htp.p ('Gender: ' || gender);
 htp.br;
 htp.p ('Comments: ' || comments);
 htp.br;

 htp.bold ('Options Selected...');
 htp.br;
 FOR i IN 1..options.COUNT LOOP
 htp.p (options(i));
 htp.br;
 END LOOP;

 CHAPTER 14 USING PL/SQL ON THE WEB

297

 common.footer;

END submit;

END input_form;

How It Works
Access the web page using a link with an HTML anchor URL of http://node.mycompany.com/DAD_NAME/
input_form.html.

■ Note See Recipe 14-1 to define the DAD_NAME.

The input_form package specification defines an empty collection named null_array as the type
OWA_UTIL.IDENT_ARR. It is used as the default value in the event the web form is submitted without
checking at least one of the check boxes. Without the default value for the input parameter options, the
call to input_form.submit will not work and returns an error to the user if no boxes are checked.

■ Note See Recipe 14-9 for more information on viewing errors.

The two procedures, html and submit, exposed in the package specification, are required to make
them visible to the PL/SQL module within the Apache web server. It is important to note that it is not
possible to call procedures via a URL if they are not defined in the package specification.

The html procedure generates the data entry form shown in Figure 14-1. It begins with a call to
header common procedure, which generates the opening HTML tags. The htp.formOpen call generates
the <FORM> tag with the destination of the submit button to the submit procedure within the input_form
package.

The htp.p procedure call sends the data passed to it directly to the client's web browser, this
procedure should not be confused with the htp.para, which produces the <P> tag. The htp.br call sends
the
 tag to the client's web browser.

The remainder of the procedure generates several form elements that accept user input. The
htp.formText call generates a simple text box that accepts nine bytes. The htp.formRadio routine is called
twice with the same variable name in the first parameter. This defines the variable gender with one of
two possible values, M or F. The call to htp.formCheckBox within the FOR…LOOP generates the checkboxes,
each having a unique value returned if checked by the user. Only the values checked are sent in a
collection to the submit routine. The call to htp.formTextArea creates a multi-line, text box 50 characters
wide and 5 lines deep. See Table 14-1 for a list of common PL/SQL Web Toolkit procedures that generate
HTML form tags.

The procedure ends with a calls to htp.formSubmit and htp.formClose, which generate the form’s
submit button and the closing </FORM> tag. When the user clicks the submit button, the client’s web
browser sends the data entered into the form to the submit routine within the input_form package.

http://node.mycompany.com/DAD_NAME

CHAPTER 14 USING PL/SQL ON THE WEB

298

Figure 14-1. Form generated by the input_form.html procedure

Table 14-1. Common form procedures in the PL/SQL Web Toolkit

Toolkit Procedure HTML Tag

htp.formCheckbox <INPUT TYPE="CHECKBOX">

htp.formClose </FORM>

htp.formHidden <INPUT TYPE="HIDDEN">

htp.formImage <IPUT TYPE="IMAGE">

htp.formOpen <FORM>

htp.formPassword <INPUT TYPE="PASSWORD">

htp.formRadio <INPUT TYPE="RADIO">

htp.formReset <INPUT TYPE="RESET">

htp.formSelectClose </SELECT>

htp.formSelectOpen <SELECT>

htp.formSelectOption <OPTION>

htp.formSubmit <INPUT TYPE="SUBMIT">

 CHAPTER 14 USING PL/SQL ON THE WEB

299

Toolkit Procedure HTML Tag

htp.formText <INPUT TYPE="TEXT">

htp.formTextarea <TEXTAREA></TEXTAREA>

htp.formTextareaClose </TEXTAREA>

htp.formTextareaOpen <TEXTAREA>

14-4. Creating a Web–based Report Using PL/SQL Procedures

Problem
You need to generate a web page report that displays the results of a database query.

Solution
Create a package with two procedures, one to accept a user’s input, and another to query the database
and display the results. Suppose, for example, that you need a report that displays information for an
employee whose employee ID has been entered by an authorized user. This recipe uses the employee
table in the HR schema.

■ Note When defining packages that contain procedures you wish to access via web browsers, you must include

each procedure you wish to access in the package specification.

■ Note See Recipe 14-2 for more information on the common package, which is used in this recipe.

CREATE OR REPLACE PACKAGE emp_rpt AS

 PROCEDURE html;
 PROCEDURE rpt (emp_id VARCHAR2);

END emp_rpt;

CREATE OR REPLACE PACKAGE BODY emp_rpt AS

PROCEDURE html IS

BEGIN

CHAPTER 14 USING PL/SQL ON THE WEB

300

 common.header ('Employee Report');
 htp.formOpen ('emp_rpt.rpt', 'POST');
 htp.p ('Employee ID:');
 htp.formText ('emp_id', 6, 6);
 htp.formSubmit;
 htp.formClose;
 common.footer; -- See recipe 14-2 for the common package.

END html;

PROCEDURE show_row (label VARCHAR2, value VARCHAR2) IS

BEGIN

 htp.tableRowOpen ('LEFT', 'TOP');
 htp.tableHeader (label, 'RIGHT');
 htp.tableData (value);
 htp.tableRowClose;

END show_row;

PROCEDURE rpt (emp_id VARCHAR2) IS

CURSOR driver IS
SELECT *
FROM employees
WHERE employee_id = emp_id;

rec driver%ROWTYPE;
rec_found BOOLEAN;

BEGIN

 common.header ('Employee Report');

 OPEN driver;
 FETCH driver INTO rec;
 rec_found := driver%FOUND;
 CLOSE driver;

 IF rec_found THEN
 htp.tableOpen;
 show_row ('Employee ID', rec.employee_id);
 show_row ('First Name', rec.first_name);
 show_row ('Last Name', rec.last_name);
 show_row ('Email', rec.email);
 show_row ('Phone', rec.phone_number);
 show_row ('Hire Date', rec.hire_date);
 show_row ('Salary', rec.salary);
 show_row ('Commission %', rec.commission_pct);
 htp.tableClose;

 CHAPTER 14 USING PL/SQL ON THE WEB

301

 ELSE
 htp.header (3, 'No such employee ID ' || emp_id);
 END IF;

 common.footer; -- See recipe 14-2 for the common package.

EXCEPTION
 WHEN OTHERS THEN
 htp.header (3, 'Invalid employee ID. Click your browser''s back button and try again.');
 common.footer;

END rpt;

END emp_rpt;

How It Works
Users access the web page using the URL http://node.mycompany.com/DAD_NAME/emp_rpt.html.

■ Note See Recipe 14-1 for more on how to define the DAD_NAME.

The package specification is defined with two procedures, html and rpt. Exposing these procedures
in the specification is required to make the PL/SQL procedures available within Apache.

Next, the package body is defined. The html procedure generates the data entry form. It generates
the opening HTML code by calling the common.header routine defined in recipe 14-2. Next, it calls the
htp.formOpen to set the form’s action, which is to run the PL/SQL procedure emp_rpt.rpt, when the user
clicks the submit button and to send the form data in a POST method, as opposed to GET. A simple
prompt and a text box follows to allow the user to enter an employee ID. A call to form.submit,
form.close and common.footer complete the HTML code.

The show_row procedure is a handy subroutine to output one table row with two data cells. It
displays data on the client’s browser in a formatted table, making it more visually appealing.

The rpt procedure accepts the user’s input in the emp_id parameter and uses it to query the
employee record. The common.header routine generates the opening HTML code. The cursor is opened
and the data is fetched into the rec data structure. The rec_found variable stores the flag that identifies if
a record was fetched. It needs to be referenced after the fetch and before the close. If a record is found,
the employee data is displayed in a two-column table, shown in Figure 14-2, otherwise a message is sent
to the user that the employee ID is not valid.

The exception is necessary to trap the error generated if the user enters a non-numeric employee
ID. Another option is to validate the user’s input prior to using it in the cursor query.

■ Note See recipe 14-10 for an example of validating user input.

http://node.mycompany.com/DAD_NAME/emp_rpt.html

CHAPTER 14 USING PL/SQL ON THE WEB

302

Figure 14-2. Results from entering employee ID 200 on the previous data entry screen

14-5. Displaying Data from Tables

Problem
You wish to provide the results from an SQL SELECT statement to the users via a web browser.

Solution
Use the Oracle PL/SQL Web Toolkit to SELECT and display data. The owa_util.tablePrint procedure
accepts any table name for the ctable parameter. When this procedure is compiled in a schema with a
DAD it can be accessed via the Web. This example displays information similar to the describe feature
within SQL*Plus.

■ Note See Recipe 14-1 to define a DAD and direct your browser to run your procedure.

■ Note See Recipe 14-2 for more information on the common package, which is used in this recipe.

CREATE OR REPLACE PROCEDURE descr_emp IS

BEGIN

 common.header ('The Employees Table');

 IF owa_util.tablePrint (
 ctable=>'user_tab_columns',
 cattributes=>'BORDER',

 CHAPTER 14 USING PL/SQL ON THE WEB

303

 ccolumns=>'column_name, data_type, data_length, data_precision, nullable',
 cclauses=>'WHERE table_name=''EMPLOYEES'' ORDER BY column_id') then
 NULL;
 END IF;

 common.footer;

END descr_emp;

How It Works
Users access the web page using the URL http://node.mycompany.com/DAD_NAME/emp_rpt.html. The
descr_emp procedure calls the owa_util.tablePrint procedure, which is included in the PL/SQL Web
Toolkit. The ctable parameter defines the table the owa_util.tablePrint procedure accesses to read the
data. The cattribributes parameter accepts options for the HTML <TABLE> tag. The ccolumns parameter
allows you to specify which columns to select from the named table. If no columns are specified, then
the procedure shows all columns. The cclauses parameter allows you to add a where clause and/or an
order by statement. If no where clause is specified, all rows are returned. The output is shown in Figure
14-3.

Figure 14-3. Results of the descr_emp procedure

14-6. Creating a Web Form Dropdown List from a Database Query

Problem
Your web form requires a dropdown list whose elements are drawn from a database table.

http://node.mycompany.com/DAD_NAME/emp_rpt.html

CHAPTER 14 USING PL/SQL ON THE WEB

304

Solution
Use the htp.formSelectOpen, htp.formSelectOption and htp.formSelectClose procedures in the PL/SQL
Web Toolkit to generate the required HTML tags. For example, suppose you need to use the HR schema
to create a dropdown list of job titles from the JOBS table. Here’s how you’d do it.

create or replace procedure job_list as

cursor driver is
select job_id, job_title
from jobs
order by job_title;

begin

 common.header ('Job Title');
 htp.formSelectOpen ('id', 'Job Title: ');
 htp.formSelectOption ('', 'SELECTED');

 for rec in driver LOOP
 htp.formSelectOption (rec.job_title, cattributes=>'VALUE="' || rec.job_id || '"');
 end LOOP;

 htp.formSelectClose;
 common.footer;

end job_list;

This procedure produces the following web page.

Figure 14-4. Dropdown list created by job_list procedure

 CHAPTER 14 USING PL/SQL ON THE WEB

305

How It Works
The htp.formSelectOpen procedure generates the HTML <SELECT NAME="id">, which defines the
dropdown list in the web browser. In addition the procedure uses the second parameter as the prompt
for the dropdown list. In this example the prompt is Job Title:.

The call to htp.formSelectOption procedure defines the elements of the dropdown list. The first
parameter is the text displayed in the list and the second parameter preselects the element in the list
when it is first displayed. In this example the first call to the htp.formSelectOption procedure defines the
default selected element in the list to an empty value.

The subsequent calls to htp.formSelectOption that appear in the cursor for loop define the
remaining elements in the dropdown list using the data selected from the JOBS table. The cattributes
parameter is used to change the default value returned by the web browser when the element is selected
from the list.

The call to htp.formSelectClose generates the </SELECT> HTML tag to close the dropdown list.
Dropdown lists usually appear within the <FORM> tags to accept user input and process that input on a
subsequent page.

■ Note See Recipe 14-3 for more information on creating an input form.

14-7. Creating a Sortable Web Report

Problem
You need a report that displays data that is sorted by a field the user selects.

Solution
Create a package that prompts the user for a sort field, then generates the sorted output using the sort
field parameter in the ORDER BY section of the SELECT statement. In this example the user is prompted to
select a sort option on the EMPLOYEEs table. The options are to sort by last name, hire date, salary, or
employee ID.

■ Note See Recipe 14-1 to define a DAD and direct your browser to run your procedure.

■ Note See Recipe 14-2 for more information on the common package, which is used in this recipe.

CREATE OR REPLACE PACKAGE sorted AS

 PROCEDURE html;

CHAPTER 14 USING PL/SQL ON THE WEB

306

 PROCEDURE rpt (sort_order VARCHAR2);

END sorted;

CREATE OR REPLACE PACKAGE BODY sorted AS

PROCEDURE html IS

BEGIN

 common.header ('Sorted Report');
 htp.formOpen ('sorted.rpt', 'POST');
 htp.formSelectOpen ('sort_order', 'Select a Sort Order: ');
 htp.formSelectOption ('Last Name');
 htp.formSelectOption ('Hire Date');
 htp.formSelectOption ('Salary');
 htp.formSelectOption ('Employee ID');
 htp.formSelectClose;
 htp.formSubmit;
 htp.formClose;
 common.footer;
END html;

PROCEDURE rpt (sort_order VARCHAR2) IS

CURSOR driver IS
SELECT *
FROM employees
ORDER BY DECODE (sort_order,
 'Last Name', last_name,
 'Hire Date', TO_CHAR (hire_date, 'YYYYMMDD'),
 'Salary', TO_CHAR (salary, '00000'),
 'Employee ID', TO_CHAR (employee_id, '00000'));

BEGIN

 common.header ('Sorted Report by '||sort_order); -- See recipe 14-2.
 htp.tableOpen ('BORDER');
 htp.tableRowOpen ('LEFT', 'BOTTOM');
 htp.tableHeader ('Name');
 htp.tableHeader ('Hired');
 htp.tableHeader ('Salary');
 htp.tableHeader ('ID');
 htp.tableRowClose;

 FOR rec IN driver LOOP
 htp.tableRowOpen ('LEFT', 'TOP');
 htp.tableData (rec.last_name);
 htp.tableData (rec.hire_date);
 htp.tableData (rec.salary);
 htp.tableData (rec.employee_id);
 htp.tableRowClose;

 CHAPTER 14 USING PL/SQL ON THE WEB

307

 END LOOP;

 htp.tableClose;
 common.footer;

END rpt;

END sorted;

How It Works
Users access the web page using the URL http://node.mycompany.com/DAD_NAME/sorted.html.

■ Note See Recipe 14-1 for more on how to to define the DAD_NAME.

The package specification is defined by exposing two procedures, html and rpt. You must define
these procedures in the specification to make the PL/SQL procedures available within Apache.

Next, the package body is defined. The html procedure generates the data entry form. It generates
the opening HTML code by calling the common.header routine defined in Recipe 14-2. Next, it calls the
htp.formOpen to set the form’s action when the user clicks the Submit button. The calls to
htp.formSelectOpen, htp.formSelectOption and htp.formSelectClose procedures create the dropdown
list for the user to select a sort order.

■ Note See Recipe 14-6 for more information on how to create dropdown lists.

A call to form.submit, form.close and common.footer complete the necessary HTML code. The form
generated is shown in Figure 14-5.

The rpt procedure accepts the sort_order parameter, which is used in the cursor to dynamically
determine the sort order on the EMPLOYEES table. The order by option in the select statement uses the
decode function to return the proper string needed for ordering based on the user’s input.

The first set of parameters sent to the decode function, namely the first_name field, defines the data
type returned by the decode function. This is important to note as the remaining data types returned
from the decode function will be converted to strings to match the first_name. It is necessary to convert
the numeric and date fields to strings that sort properly. For example, if the default date string format is
dd-Mon-yy, then the hire dates will sort by the day of the month first, then by the month’s abbreviation
and year. The desired sort order is year, month, then day.

http://node.mycompany.com/DAD_NAME/sorted.html

CHAPTER 14 USING PL/SQL ON THE WEB

308

Figure 14-5. Initial data entry screen showing the sort options

14-8. Passing Data Between Web Pages

Problem
You have a multi-page data entry form in which the final page requires data entered on pages that
precede it. You need to pass the data gathered on previous pages to the current page.

Solution
Pass the name/value pairs from previous pages using the htp.formHidden procedure in the PL/SQL Web
Toolkit. In this recipe each parameter is passed to the next form using hidden HTML elements.

CREATE OR REPLACE PACKAGE multi AS

 PROCEDURE page1;
 PROCEDURE page2 (var1 varchar2);
 PROCEDURE page3 (var1 varchar2, var2 varchar2);
 PROCEDURE process (var1 varchar2, var2 varchar2, var3 varchar2);

END multi;

CREATE OR REPLACE PACKAGE BODY multi AS

PROCEDURE page1 IS

begin

 htp.formOpen ('multi.page2', 'POST');
 htp.p ('Enter First Value:');
 htp.formText ('var1', 10, 10);
 htp.formSubmit;
 htp.formClose;

END page1;

PROCEDURE page2 (var1 VARCHAR2) IS

 CHAPTER 14 USING PL/SQL ON THE WEB

309

begin

 htp.formOpen ('multi.page3', 'POST');
 htp.formHidden ('var1', var1);
 htp.p ('Enter Second Value:');
 htp.formText ('var2', 10, 10);
 htp.formSubmit;
 htp.formClose;

END page2;

PROCEDURE page3 (var1 VARCHAR2, var2 VARCHAR2) IS

begin

 htp.formOpen ('multi.process', 'POST');
 htp.formHidden ('var1', var1);
 htp.formHidden ('var2', var2);
 htp.p ('Enter Third Value:');
 htp.formText ('var3', 10, 10);
 htp.formSubmit;
 htp.formClose;

END page3;

PROCEDURE process (var1 varchar2, var2 varchar2, var3 varchar2) is

BEGIN

 htp.p ('The three variables entered are...');
 htp.br;

 htp.p ('1=' || var1);
 htp.br;
 htp.p ('2=' || var2);
 htp.br;
 htp.p ('3=' || var3);

END process;

END multi;

How It Works
Users access the web page using the URL http://node.mycompany.com/DAD_NAME/multi.page1.

■ Note See Recipe 14.1 to define the DAD_NAME.

http://node.mycompany.com/DAD_NAME/multi.page1

CHAPTER 14 USING PL/SQL ON THE WEB

310

The page1 procedure within the mulit package prompts the user for an input value, which is passed
to procedure page2 as its parameter, var1. The htp.formHidden call in the page2 procedure produces an
HTML <INPUT> tag of type HIDDEN. In this recipe it produces the following HTML code in the client’s web
browser: <INPUT TYPE="hidden" NAME="var1" VALUE="xxx">, where xxx is the text the user entered on the
first page of this multi-part form.

The page2 procedure then accepts more user input into the form variable var2, which is passed to
page3 along with var1 collected on the first input page. The third page accepts the final user input and
passes it to the process procedure, where final processing occurs.

14-9. Viewing Errors for Debugging Web Apps

Problem
You have a PL/SQL package or procedure called from a web client that generates errors and you need to
view the error message.

Solution
Choose one of the following two solutions, depending on your circumstances.

Solution #1

If the package is in use in a production environment, then check the output of the Apache error log file.
The log file location is defined in the httpd.conf configuration file. The default log file location is
[oracle_home]\Apache\Apache\logs directory. Open the log file and search for the errors generated with
a timestamp that corresponds to the approximate time the error was generated.

Solution #2

If the application is in development or running in a non-production environment, change the default
error style within the DAD used to produce the web page that failed. The error style is defined in the
DADS.CONF file located in [oracle_homme]\Apache\modplsql\conf. Set the PlsqlErrorStyle to DebugStyle.

■ Note See recipe 14-1 for more information on defining DADs.

How It Works

Solution #1

The PL/SQL module within Apache logs all errors, complete with timestamps. New errors are written to
the end of the error log. This solution is recommended for production environments where the display
of Apache environment variables may pose security issues.

 CHAPTER 14 USING PL/SQL ON THE WEB

311

Here’s an example of an error message written to the error log. In this example, a procedure was
called from the Web but was missing required parameters.

[error] [client 127.0.0.1] mod_plsql: /DAD_NAME/class_sched.list HTTP-404

class_sched.list: SIGNATURE (parameter names) MISMATCH
VARIABLES IN FORM NOT IN PROCEDURE:
NON-DEFAULT VARIABLES IN PROCEDURE NOT IN FORM: THIS_ID, THIS_ID_TYPE

Solution #2

Setting the PlsqlErrorStyle to DebugStyle causes Apache to display all PL/SQL error messages on the
client’s web browser when the PL/SQL routine fails. It displays the same error messages normally found
in the Apache log file plus a list of all Apache environment variables and their values. This solution is
recommended for non-production environments where errors are more likely to occur during
development and testing. It has the advantage of immediate, onscreen feedback for developers and
testers.

The following is an example of an error message written to the web browser.

class_sched.list: SIGNATURE (parameter names) MISMATCH
VARIABLES IN FORM NOT IN PROCEDURE:
NON-DEFAULT VARIABLES IN PROCEDURE NOT IN FORM: THIS_ID, THIS_ID_TYPE

 DAD name: default
 PROCEDURE : class_sched.list
 URL : http://node.mycomp.com/DAD_NAME/class_sched.list
 PARAMETERS :
 ===========

 ENVIRONMENT:
 ============
 PLSQL_GATEWAY=WebDb
 GATEWAY_IVERSION=3
 << snip >>

14-10. Generating JavaScript via PL/SQL

Problem
Your procedure requires JavaScript but you do not have access to the Oracle application server to store
the script file to make it accessible from Apache.

Solution
Use the Oracle PL/SQLWeb Toolkit to output JavaScript within your PL/SQL procedure. There are two
steps to define and enable a JavaScript within your PL/SQL procedure.

http://node.mycomp.com/DAD_NAME/class_sched.list

CHAPTER 14 USING PL/SQL ON THE WEB

312

First, define the JavaScript source on the web page that requires access to your
JavaScript routine using the HTML tag <SCRIPT>.

Define a PL/SQL procedure to match the name of the <SCRIPT> tag’s source (SRC)
property.

In the following example the html procedure defines the <SCRIPT> tag with the source set to
empID.js and the js procedure generates the JavaScript code.

CREATE OR REPLACE PACKAGE empID IS

 PROCEDURE html;
 PROCEdURE js;

END empID;

CREATE OR REPLACE PACKAGE BODY empID IS

PROCEDURE html is

BEGIN

 common.header ('Employee Report'); -- See recipe 14-2 for the common package.
 htp.p ('<SCRIPT LANGUAGE="JavaScript" SRC="' ||
 owa_util.get_cgi_env ('REQUEST_PROTOCOL') || '://' ||
 owa_util.get_cgi_env ('HTTP_HOST') ||
 owa_util.get_cgi_env ('SCRIPT_NAME') || '/empID.js"></SCRIPT>');

 htp.formOpen ('emp_rpt.rpt', 'POST'); -- See recipe 14-4 for the emp_rpt pacakge.
 htp.p ('Employee ID:');
 htp.formText ('emp_id', 6, 6, cattributes=>'onChange="validateNumber(this.value);"');

 htp.formSubmit;
 htp.formClose;
 common.footer; -- See recipe 14-2 for the common package.

END html;

PROCEDURE js is

BEGIN

 htp.p ('

function validateNumber (theNumber) {

 if (isNaN (theNumber)) {
 alert ("You must enter a number for the Employee ID");
 return false; }

 return true;

 CHAPTER 14 USING PL/SQL ON THE WEB

313

}');

END js;

END empID;

How It Works
Begin by creating the package specification for empID, which exposes the html and js procedures. Next
create the package body with two procedures, html and js.

The html procedure generates the opening HTML code with a call to common.header. Next, the
procedure generates a <SCRIPT> tag that identifies the location of the JavaScript to include in the user’s
browser. The <SCRIPT> tag of this form is one of the few HTML tags not predefined in the PL/SQL Web
Toolkit.

The <SCRIPT> tag takes advantage of the owa_util package, which is also part of the PL/SQL Web
Toolkit, to dynamically generate the web address of the JavaScript using the settings of the Apache
environment values. This method avoids your having to hard-code the URL of the script into the
procedure and allows it to run in any environment—development, integration, production, etc. The URL
generated references the JavaScript package defined later in the package body.

Next, the html procedure generates the <FORM> tag with emp_rpt.rpt as its target. When the user
clicks the Submit button the form will call the PL/SQL procedure emp_rpt.rpt defined in Recipe 14-4. It
will not call a procedure within the empID package.

The htp.formText routine contains an extra parameter to include the JavaScript necessary to run
when the user changes the value in the emp_id field. Nearly every procedure in the htp package includes
the cattributes parameter, which provides for any additional option needed within the tag that is not
already defined in the existing parameters. Figure 14-6 shows the data entry form with a non-numeric
employee ID; in this example the letter “o” was used instead of a zero. JavaScript pops up the error
message shown.

The js procedure consists of a simple print statement that contains the entire contents of the
JavaScript code. JavaScript allows either single or double quotes for character strings. Using double
quotes in the JavaScript code avoids conflicts with the single quote requirements of PL/SQL.

Figure 14-6. Error message generated by JavaScript when a non-numeric employee ID is entered

CHAPTER 14 USING PL/SQL ON THE WEB

314

14-11. Generating XML Output

Problem
You need to provide XML data for PL/SQL or other consumers of data from your Oracle database.

Solution
Use Oracle’s built-in DBMS_XMLGEN package to extract data from the database in standard XML format and
then output the data through the Apache web server. In this example a generic procedure builds and
outputs XML formatted data based on the SQL query statement passed to it. This procedure can be used
in any application that requires XML output extracted from database tables.

CREATE OR REPLACE PROCEDURE gen_xml (sql_stmt VARCHAR2) IS

string VARCHAR2(4000);
ipos INTEGER;
offset INTEGER;
n INTEGER := 1;

qryctx dbms_xmlgen.ctxhandle;
result CLOB;

BEGIN

 qryctx := dbms_xmlgen.newcontext (sql_stmt);
 result := dbms_xmlgen.getxml (qryctx);
 dbms_xmlgen.closecontext (qryctx);

 owa_util.mime_header ('text/xml', true);
 LOOP
 EXIT WHEN result IS NULL;
 ipos := dbms_lob.instr (result, CHR(10), 1, n);
 EXIT WHEN ipos = 0;

 string := dbms_lob.substr (result, ipos-offset, offset);
 htp.p (string);

 offset := ipos + 1;
 n := n + 1;
 END LOOP;

 IF result IS NULL THEN
 htp.p ('<ROWSET>');
 htp.p ('</ROWSET>');
 END IF;

END gen_xml;

 CHAPTER 14 USING PL/SQL ON THE WEB

315

How It Works
The newcontext procedure in the dbms_xmlgen package executes the query passed to it in the first
parameter. The getxml procedure returns the data in XML format. Each row of data from the select
statement is enclosed in the XML tags <ROW>. Each field in the row is enclosed by its attribute (field)
name in the database. For example, the employee ID is enclosed in the XML tag <EMPLOYEE_ID>.

The owa_util.mime_header is called to output the proper string to the client’s browser, indicating the
content of the web page is in standard XML format. At this point it is sufficient to simply output the XML
data returned by the call to xmlgen with an htp.p statement. However, this approach works only if the
length in bytes of the XML data does not exceed the maximum allowed by the htp.p procedure, which is
32k. The LOOP breaks apart the XML data into smaller segments at each line break, CHR(10), insuring no
call to htp.p exceeds the maximum length.

The final IF statement returns an empty XML tag set if the result of the query returns no rows.
Without the empty tag set your Ajax call will fail because the Ajax call to parse the data from the XML
structure requires the <ROWSET> tags.

Here is an example of the XML output produced from Recipe 14-12. Only the first two data rows
retrieved are displayed.

<ROWSET>
 <ROW>
 <EMPLOYEE_ID>101</EMPLOYEE_ID>
 <LAST_NAME>Kochhar</LAST_NAME>
 </ROW>
 <ROW>
 <EMPLOYEE_ID>102</EMPLOYEE_ID>
 <LAST_NAME>De Haan</LAST_NAME>
 </ROW>
</ROWSET>

14-12. Creating an Input Form with AJAX

Problem
You need a web application that can interactively retrieve data based on partial data entered by the user.
The data must be retrieved before the user clicks the Submit button to process the page.

Solution
Use JavaScript and Ajax to dynamically retrieve data as the user enters data into the web form. This
recipe uses the EMPLOYEES table in the HR schema.

The data entry screen is built with all managers in a single dropdown list, which includes a call to a
JavaScript procedure that invokes Ajax to retrieve subordinate data. Once the user selects a manager, the
employee dropdown list populates with the manager’s subordinates. The subordinates’ dropdown list is
defined with an ID, which is required by JavaScript to access the list and load the manager’s
subordinates.

The package contains the procedure xml, which is required to produce the XML data required by the
Ajax call. The PL/SQL procedure ajax.xml is called by the web browser within the AjaxMgr.js procedure.

CREATE OR REPLACE PACKAGE ajax IS

CHAPTER 14 USING PL/SQL ON THE WEB

316

 PROCEDURE html;
 PROCEDURE xml (ID INTEGER);

END ajax;

CREATE OR REPLACE PACKAGE BODY ajax IS

PROCEDURE html is

CURSOR driver IS
SELECT employee_id, last_name
FROM employees
WHERE employee_id in
(SELECT DISTINCT manager_id
 FROM employees)
ORDER BY last_name;

BEGIN

 common.header ('Manager/Employee Example'); -- See recipe 14-2 for the common package.
 htp.p ('<SCRIPT LANGUAGE="JavaScript" SRC="' ||
 owa_util.get_cgi_env ('REQUEST_PROTOCOL') || '://' ||
 owa_util.get_cgi_env ('HTTP_HOST') ||
 '/js/AjaxMgr.js"></SCRIPT>');

 htp.formOpen ('#', 'POST');
 htp.p ('Select a Manager:');
 htp.formSelectOpen ('mgr', cattributes=>'onChange="loadEmployees(this.value);"');
 htp.formSelectOption ('', 'SELECTED');

 FOR rec IN driver LOOP
 htp.formSelectOption (rec.last_name, cattributes=>'VALUE="'||rec.employee_id||'"');
 END LOOP;

 htp.formSelectClose;
 htp.br;

 htp.p ('Select a Subordinate:');
 htp.formSelectOpen ('emp', cattributes=>'ID="emp_list"');
 htp.formSelectClose;
 htp.br;

 htp.formSubmit;
 htp.formClose;
 common.footer;

END html;

PROCEDURE xml (ID INTEGER) IS

BEGIN

 CHAPTER 14 USING PL/SQL ON THE WEB

317

-- see recipe 14-11 for more information on the gen_xml procedure.
 gen_xml ('SELECT employee_id, last_name ' ||
 'FROM employees ' ||
 'WHERE manager_id = ' || ID ||
 ' ORDER by 1');

END xml;

END ajax;

How It Works
The recipe begins by defining the package specification with two packages, html and xml. The html
package generates the HTML data entry form and the xml procedure generates the XML data required by
the call to Ajax.

The html procedure generates the opening HTML code with a call to common.header. Next, the
procedure generates a <SCRIPT> tag that identifies the location of the JavaScript to include in the user’s
browser. The <SCRIPT> tag of this form is one of the few HTML tags not pre-defined in the PL/SQL Web
Toolkit.

The <SCRIPT> tag takes advantage of the owa_util package, which is also part of the PL/SQL Web
Toolkit. It dynamically generates the web address of the JavaScript based on Apache environment
values. This method avoids hard-coding the URL into the procedure and allows it to run in any
environment—development, integration, production, etc.

■ Note The JavaScript, AjaxMgr.js, is included in the media but not reproduced here.

An HTML form is opened with two dropdown lists defined. The first list is populated with the names
of all managers from the employees table. The second dropdown list is intentionally left empty. It will be
populated at runtime when the user selects a manager from the first dropdown list. Figure 14-7 shows
the initial data entry screen generated by the html procedure, prior to the user selecting a manager from
the manager’s dropdown list.

The manager’s dropdown list, mgr, is created using the htp.formSelectOpen procedure with an
additional parameter to define the JavaScript to execute when the selected item in the list changes. A
change to the manager’s dropdown list invokes the JavaScript procedure loadEmployees, which was
defined earlier in the <SCRIPT> tag.

The employee’s dropdown list, emp, is also created using the htp.formSelectOpen procedure with an
additional parameter to define the ID name of the object in the Web browser’s DOM

2
. This ID is required

by the JavaScript to dynamically rebuild the employee dropdown list if the value in the manager
dropdown list changes. Figure 14-8 shows the data entry form after a Manager is selected by the user.
Note the Subordinate list is now populated.

2
 A DOM (Document Object Model) “is a cross-platform and language-independent convention for

representing and interacting with objects in HTML, XHTML and XML documents.” – Wikipedia.

CHAPTER 14 USING PL/SQL ON THE WEB

318

The xml procedure calls the gen_xml procedure, created in Recipe 14-11, to generate the data
required to populate the employee dropdown list via the Ajax call. The gen_xml procedure is generic in
that it only requires the select statement need to produce the XML output.

Figure 14-7. Manager dropdown list with empty subordinate dropdown list

Figure 14-8. Subordinate list after being populated by Ajax

C H A P T E R 15

319

Java in the Database

Java plays an important role in the application development space today. It has become increasingly
popular over the years, because it is cross-platform, powerful, and easy to learn. Although Java
development is not directly related to PL/SQL, it is important for a PL/SQL developer to learn a bit about
Java since there are some major benefits to using it to perform database tasks. Integrating the two
languages when you’re building Oracle Database applications is a seamless effort. Oracle Database 11g
contains JVM compatibility with Java 1.5, which includes substantial changes to the Java language,
making it an even more complementary development platform. Also starting with Oracle 11g, the
database includes a just-in-time compiler, which compiles Java bytecode into machine language
instructions, making Java in the database run much faster. In 2010, Oracle acquired Sun Microsystems,
so it now owns Java. This may help the database JVM compatibility remain in concert with the latest
releases.

In this chapter, you will learn how to combine the power of PL/SQL development with Java code
that is stored within the database. You will learn how to create stored procedures, functions, and triggers
using the Java language. Running Java in the database is a substantial topic that has filled entire books,
but in this chapter, we will focus only on using the Java types in conjunction with PL/SQL applications—
which, after all, is the subject of this book. For complete documentation on using Java inside Oracle
Database, please see the Oracle Java developers guide at
http://download.oracle.com/docs/cd/E11882_01/java.112/e10588/toc.htm.

15-1. Creating a Java Database Class

Problem
You want to write a Java class that will query the database and return a result.

Solution
Create a Java class that uses the Java Database Connectivity (JDBC) API to query the Oracle Database.
For example, the Java class in the following example will query the EMPLOYEES table for all employees who
belong to the IT department. The example entails a complete Java class that is named Employees. This
class contains a method named getItEmps() that will become a Java stored procedure. The Employees
class shown here will be stored into a file named Employees.java.

import java.sql.*;
import oracle.jdbc.*;

public class Employees {
 public static void getItEmps(){

http://download.oracle.com/docs/cd/E11882_01/java.112/e10588/toc.htm

CHAPTER 15 JAVA IN THE DATABASE

320

 String firstName = null;
 String lastName = null;
 String email = null;
 try {
 Connection conn = DriverManager.
 getConnection("jdbc:default:connection:");
 String sql = "SELECT FIRST_NAME, LAST_NAME, EMAIL " +
 "FROM EMPLOYEES " +
 "WHERE DEPARTMENT_ID = 60";

 PreparedStatement pstmt = conn.prepareStatement(sql);
 ResultSet rset = pstmt.executeQuery();
 while(rset.next()) {
 firstName = rset.getString(1);
 lastName = rset.getString(2);
 email = rset.getString(3);
 System.out.println(firstName + " " + lastName + " " +
 email);
 }
 pstmt.close();
 rset.close();
 } catch (SQLException ex){
 System.err.println("ERROR: " + ex);
 }
 };

The following lines from SQL*Plus show how to execute this Java in the database, followed by the
output from the program. Prior to executing the code, you must load it into the database and compile it.
You will learn more about doing this in the next recipe. To learn more about executing Java in the
database, please see Recipe 15-5. For now, it is important to see the output that will result from a
successful call to this Java program.

SQL> exec get_it_emps;
Alexander Hunold AHUNOLD
Bruce Ernst BERNST
David Austin DAUSTIN
Valli Pataballa VPATABAL
Diana Lorentz DLORENTZ

PL/SQL procedure successfully completed.

The Java class in this example performs a simple query and then prints the result. Although this
class does not demonstrate the full potential of using Java, it is a good segue into Java database
development.

How It Works
Java is a mature language that can be used in conjunction with PL/SQL. Sometimes it makes sense to
code portions of your application in Java, while in other instances it may make sense to code the entire

 CHAPTER 15 JAVA IN THE DATABASE

321

application in Java. Both PL/SQL and Java can coexist in the same application, and you must use PL/SQL
to access Java via the database.

This recipe demonstrates how to create a simple Java class that queries the database for EMPLOYEE
records. The JDBC APIs provide a way for Java programs to methodically perform the tasks you will
typically want to complete whenever you access a database, whether it’s querying data, updating
records, or deleting rows.

A Java class that you will use to access an Oracle Database as a stored procedure must adhere to a
few standards. The class must be public, and each of its methods must be public and static. Failure to
follow these standards will render the class methods inaccessible for use as stored procedures.

The first step taken in the solution to this recipe is to obtain a connection to the database. In a Java
class that lives outside the database, obtaining a connection is a performance-intensive operation, and
you must pass a user name and password along with the database host name. However, obtaining a
connection using stored procedures is a bit different since they reside within the database itself. The
only requirement is that you pass jdbc:default:connection to the getConnection() method.

Next, the SQL query (sql) is formed as a String, and a PreparedStatement object (pstmt) is then

created from it using the prepareStatement method. The prepared statement is what actually queries the
database. The next line of code in the solution issues the query by calling the executeQuery() method on
the prepared statement object, which returns a result set. The result set is what you need to use in order
to access the rows that have been returned via the query. Use a simple while loop to traverse the rows,
and obtain each of the values from the result set within each iteration of the loop by indicating the
position of the column you want to retrieve. For instance, to obtain the FIRST_NAME, you will call
rset.getString(1) because FIRST_NAME is the first column that is listed within the query.

Lastly, the class in the solution closes the prepared statement and result set objects. Not doing so
may cause issues such as memory leaks, although Java has a very efficient garbage collection system, so
it should take care of this for you. Again, closing the objects is a form of good practice to ensure that
resources can be reallocated.

The Oracle Java virtual machine (JVM) also supports the use of SQLJ for database access. Use of
SQLJ is beyond the scope of this book, but if you are interested in learning about it JVM, then please refer
to the Oracle Java Developer Guide, which can be found at
http://download.oracle.com/docs/cd/E11882_01/java.112/e10588/toc.htm.

15-2. Loading a Java Database Class into a Database

Problem
You want to load a Java class into a schema within your Oracle Database.

Solution #1

You can use the CREATE JAVA command to load the Java source into the database by copying and pasting
the Java source into a SQL file. This is the easiest way to create a Java class and then load it into the
database if you are not working directly on the database server but rather remotely using an editor or
SQL*Plus. The following lines of SQL code will load the Java class that was created in Recipe 15-1 into the
database using the CREATE JAVA command:

CREATE OR REPLACE JAVA SOURCE NAMED "Employees" AS
import java.sql.*;
import oracle.jdbc.*;

http://download.oracle.com/docs/cd/E11882_01/java.112/e10588/toc.htm

CHAPTER 15 JAVA IN THE DATABASE

322

public class Employees {
 public static void getItEmps(){
 String firstName = null;
 String lastName = null;
 String email = null;
 try {
 Connection conn = DriverManager.
 getConnection("jdbc:default:connection:");
 String sql = "SELECT FIRST_NAME, LAST_NAME, EMAIL " +
 "FROM EMPLOYEES " +
 "WHERE DEPARTMENT_ID = 60";

 PreparedStatement pstmt = conn.prepareStatement(sql);
 ResultSet rset = pstmt.executeQuery();
 while(rset.next()) {
 firstName = rset.getString(1);
 lastName = rset.getString(2);
 email = rset.getString(3);
 System.out.println(firstName + " " + lastName + " " +
 email);
 }
 pstmt.close();
 rset.close();
 } catch (SQLException ex){
 System.err.println("ERROR: " + ex);
 }
 }

 };

Next, you need to compile the code. To do so, use the ALTER JAVA CLASS <name> RESOLVE command.
The following line of code compiles the Employees Java source:

ALTER JAVA CLASS "Employees" RESOLVE;

Solution #2

You can use the loadjava utility that is provided by Oracle in order to load Java code into the database.
This situation works best if you are working directly on the database server and have access to the
loadjava utility that is installed in the Oracle Database home. This utility is also nice to use if you already
have the Java code stored in a file and do not want to copy and paste code into an editor or SQL*Plus.
The following code demonstrates loading a Java source file named Employees.java using the loadjava
utility:

loadjava –user dbuser Employees.java

After the command is issued, you will be prompted for the password to the user who you named
using the –user option. By issuing the –resolve option, you will be loading the Java into the database and
compiling at the same time. This saves you the step of issuing the ALTER JAVA CLASS <name> RESOLVE
command.

 CHAPTER 15 JAVA IN THE DATABASE

323

How It Works
You can load Java source code into the database directly using the CREATE JAVA SOURCE command. This
will load the source and make it accessible to the schema in which it was loaded. Once loaded, you can
create a call specification for any of the class methods that you want to make into a stored procedure or
function. The call specification maps the Java method names, parameter types, and return types to their
SQL counterparts. You will learn more about creating call specifications in Recipe 15-4. We recommend
compiling the source using the RESOLVE command before attempting to invoke any of its methods.
However, if you do not issue the RESOLVE command, then Oracle Database will attempt to compile the
Java source dynamically at runtime.

 Note A class name can be a maximum of 30 characters in length. If the specified name is more than 30

characters in length, then Oracle will automatically shorten it for you and create and use a map to correlate the

long name with the shortened name. You can still specify the long name in most cases, and Oracle will

automatically convert that name to the shortened name for you. However, in some cases you will need to use the

DBMS_JAVA.SHORTNAME('long_classname') function to map the name for you. Conversely, if you want to retrieve

the long name by using its corresponding short name, you can use the

DBMS_JAVA.LONGNAME('short_classname') function.

The loadjava utility, which is the tool you use to implement the second solution, uses the CREATE
JAVA command to load the Java into the database. It also allows you to specify the –resolve option,
which will compile the code once it has been loaded. The advantage to using loadjava is that you can
load Java source files directly into the database without the need to create a separate SQL file containing
the CREATE JAVA command or copy and paste the Java class into SQL*Plus. The downside is that you
must have access to the loadjava binary executable that resides on the Oracle Database server. This
utility can also be used to load files of type .class, .sqlj. , .properties, and .ser.

If your code is unable to compile because of errors, then it will not execute if you attempt to invoke
one of its methods. You must repair the error(s) and ensure that the code compiles successfully before it
can be used. If your code does not compile, then you can check the USER_ERRORS table to see what
issue(s) are preventing the code from compiling successfully. The USER_ERRORS table describes the
current errors on all the objects that are contained within the user’s schema. To learn more about
querying the USER_ERRORS table, please refer to Recipe 15-15.

15-3. Loading a Compiled Java Class Into the Database

Problem
You want to load a compiled Java class into the database so that you can use one or more of its methods
as stored procedures.

CHAPTER 15 JAVA IN THE DATABASE

324

Solution
Use the loadjava command-line utility to load the compiled Java class into the database. The following
line of code demonstrates how to use the loadjava utility to load a compiled Java class file named
Employees.class into the database.

loadjava -user dbuser -resolve Employees.class

You will be prompted to enter the password for the database user who you designated when issuing
the command.

How It Works
The loadjava utility can be used to load compiled Java class files into the database. To do so, you have
access to the binary loadjava utility executable. Usually this means you are located directly on the
Oracle Database server hosting the database that you want to load the Java into. Before you can invoke
the loadjava utility, you should be sure that the ORACLE_SID for the target database has been set. If the
server on which you are located contains more than one Oracle home, then it is a good idea to also set
the ORACLE_HOME environment variable to be sure you will be invoking the correct version of the loadjava
utility for your database. The loadjava utility is located within the bin directory of the Oracle Database
home. The following statements show how to set these two environment variables on a Windows
machine:

SET ORACLE_SID=MYDATABASE

SET ORACLE_HOME=<PATH_TO_ORACLE_HOME>

If you happen to be working on a Unix or Linux machine, the equivalent commands would be as
follows:

setenv ORACLE_SID = MYDATABASE
setenv ORACLE_HOME= <PATH_TO_ORACLE_HOME>

You must have the following permissions in order to use the loadjava utility:

• CREATE PROCEDURE
• CREATE TABLE
• Oracle.aurora.security.JServerPermission.loadLibraryInClass.classname

Several options are at your disposal when using loadjava to load source or compiled class files into

the database. The –resolve option can be used to compile Java source and mark it as VALID within the
Oracle Database. The –resolver option can be used for locating other Java class files that your code is
dependant upon. For a complete listing of loadjava options, please see the online Oracle
documentation, which can be found at
http://download.oracle.com/docs/cd/E11882_01/java.112/e10588/cheleven.htm#CACFHDJE.

The loadjava utility is a member of the DBMS_JAVA package, and it can be invoked directly from

within your PL/SQL code as well. To do this, issue a call to DBMS_JAVA.loadjava, and pass the options
separated by spaces. This is demonstrated by the following lines of text in SQL*Plus:

call dbms_java.loadjava(‘Employees.class’);

http://download.oracle.com/docs/cd/E11882_01/java.112/e10588/cheleven.htm#CACFHDJE

 CHAPTER 15 JAVA IN THE DATABASE

325

15-4. Exposing a Java Class As a Stored Procedure

Problem
You have created a Java stored procedure and loaded it into the database, and now you want to access it
via PL/SQL.

Solution
Create a PL/SQL call specification for the Java class. The PL/SQL call specification will essentially wrap
the call to the Java class, enabling you to have access to the class from PL/SQL. The following code
demonstrates the creation of a call specification for the Java class that was created in Recipe 15-1 and
loaded into the database in Recipe 15-2.

CREATE OR REPLACE PROCEDURE get_it_emps AS LANGUAGE JAVA

NAME 'Employees.getItEmps()';

How It Works
To make the Java class accessible from the database, you must create a PL/SQL call specification
(sometimes known as PL/SQL wrapper) for the stored Java code. A call specification maps a Java method
call to a PL/SQL procedure so that the Java code can be called from the database directly. A call
specification also maps any parameters and return type to the Java code. To learn more about mapping
parameters and return types, please see Recipe 15-7.

The call specification for a Java stored procedure is a PL/SQL procedure itself that specifies AS
LANGUAGE JAVA, followed by the name of the Java class and method that will be mapped to the procedure
name. The name of the Java method to be invoked must be preceded by the Java class name that
contains it. This is because the method has been defined as static, meaning it is a class method rather
than an instance method. When a call to the specification is made, Oracle will automatically call the
underlying Java class method.

 Note Two types of methods can be created in a Java class: class methods and instance methods. Class

methods belong to the class, rather than to an instance of the class. This means the methods are instantiated once

for each class. Instance methods belong to an instance of the class. This means that if a new instance of the class

is created, a new method will be created with that instance. Class methods have access to class variables

(otherwise known as static), whereas instance methods have access only to instance variables.

15-5. Executing a Java Stored Procedure

Problem
You want to execute a Java stored procedure that you have created from within SQL*Plus.

CHAPTER 15 JAVA IN THE DATABASE

326

Solution
Call the PL/SQL call specification that maps to the Java stored procedure. The following SQL*Plus code
demonstrates how to execute the Java class for which you created a call specification in Recipe 15-3.

SQL> set serveroutput on
SQL> call dbms_java.set_output(2000);

Call completed.

SQL> exec get_it_emps;
Alexander Hunold AHUNOLD
Bruce Ernst BERNST
David Austin DAUSTIN
Valli Pataballa VPATABAL
Diana Lorentz DLORENTZ

PL/SQL procedure successfully completed.

As you can see, when the code is executed, the results are returned to SQL*Plus and displayed as if it
were the output of a PL/SQL procedure or function.

How It Works
Java can be executed directly from within the database once a call specification has been made for the
corresponding Java method. Since the call specification is a PL/SQL procedure itself, you can invoke the
underlying Java just as if it were PL/SQL using the EXEC command from SQL*Plus or call it from any other
PL/SQL block as if it were PL/SQL as illustrated in Recipe 15-6. To see any output from the Java, you
must set the buffer size appropriately to display it. If the buffer size is not set, then no output will be
displayed. Similarly, if the buffer size is set too small, then only a portion of the output will be displayed.
Personally, we recommend setting the output size to 2000 and moving up from there if needed. To set
the buffer size, issue this command:

CALL DBMS_JAVA.SET_OUTPUT(buffer_size);

The Java will be executed seamlessly and display the result, if any, just as if it were a PL/SQL
response. In the solution to this recipe, the get_it_emps PL/SQL procedure is called. Since get_it_emps is
a call specification, it will invoke the underlying Java class method getItEmps() that actually performs the
query and displays the content.

15-6. Calling a Java Stored Procedure from PL/SQL

Problem
You want to access a Java stored procedure from within one of your PL/SQL applications. For instance,
you are creating a PL/SQL procedure, and you want to make a call to a Java stored procedure from
within it.

 CHAPTER 15 JAVA IN THE DATABASE

327

Solution
Make a call to the Java stored procedure using the call specification that you created for it. The following
code demonstrates a PL/SQL package that makes a call to a Java stored procedure and then resumes
PL/SQL execution once the call has been made.

CREATE OR REPLACE PROCEDURE employee_reports AS
 CURSOR emp_cur IS
 SELECT first_name, last_name, email
 FROM employees
 WHERE department_id = 50;

 emp_rec emp_cur%ROWTYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Employees from Shipping Department');
 DBMS_OUTPUT.PUT_LINE('----------------------------------');
 FOR emp_rec IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(emp_rec.first_name || ' ' ||
 emp_rec.last_name || ' ' ||
 emp_rec.email);
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('==');
 DBMS_OUTPUT.PUT_LINE('Employees from IT Department');
 DBMS_OUTPUT.PUT_LINE('----------------------------');
 get_it_emps;

END;

This results in the following output:

SQL> EXEC EMPLOYEE_REPORTS
Employees from Shipping Department

Matthew Weiss MWEISS
Adam Fripp AFRIPP
…
Alana Walsh AWALSH
Kevin Feeney KFEENEY
Donald OConnell DOCONNEL
Douglas Grant DGRANT
==
Employees from IT Department

Alexander Hunold AHUNOLD
Bruce Ernst BERNST
David Austin DAUSTIN
Valli Pataballa VPATABAL
Diana Lorentz DLORENTZ

PL/SQL procedure successfully completed.

CHAPTER 15 JAVA IN THE DATABASE

328

The call to the Java stored procedure from within the PL/SQL procedure is seamless. It is integrated
into the PL/SQL procedure body and invoked as if it were PL/SQL.

How It Works
The call specification publishes the Java stored procedure as if it were a PL/SQL procedure. This allows
for seamless integration of Java stored procedures and PL/SQL. In the solution to this recipe, the
EMPLOYEES table is queried via a PL/SQL cursor for all employees who belong to department 50. That
cursor is then parsed, and the results are displayed. After the cursor results have been processed, a call is
made to the Java stored procedure getItEmps() using the call specification get_it_emps. The Java stored
procedure is executed, and its results are displayed along with those from the PL/SQL cursor processing.

As you can see, Java can be executed from PL/SQL just as if it were native PL/SQL code. It can be
very useful to create database jobs utilizing Java stored procedures by developing a PL/SQL stored
procedure or anonymous block that makes a series of calls to different Java stored procedures or
functions that perform the actual processing. PL/SQL and Java in the database can be very
complementary to each other.

15-7. Passing Parameters Between PL/SQL and Java

Problem
You want to pass parameters from PL/SQL to a Java stored procedure that expects them.

Solution
Create a call specification that accepts the same number of parameters as the number the Java stored
procedure expects. For this example, an additional method will be added to the Employee Java class that
was created in Recipe 15-1. This method will be an enhanced version of the original method that will
accept a department ID as an input argument. It will then query the database for the employees who
belong to that department and display them.

The following code is the enhanced Java method that will be added the Employees class contained
within the Employees.java file:

public static void getItEmpsByDept(int departmentId){
 String firstName = null;
 String lastName = null;
 String email = null;
 try {
 Connection conn = DriverManager.
 getConnection("jdbc:default:connection:");
 String sql = "SELECT FIRST_NAME, LAST_NAME, EMAIL " +
 "FROM EMPLOYEES " +
 "WHERE DEPARTMENT_ID = ?";

 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, departmentId);
 ResultSet rset = pstmt.executeQuery();
 while(rset.next()) {
 firstName = rset.getString(1);
 lastName = rset.getString(2);

 CHAPTER 15 JAVA IN THE DATABASE

329

 email = rset.getString(3);
 System.out.println(firstName + " " + lastName + " " +
 email);
 }
 pstmt.close();
 rset.close();
 } catch (SQLException ex){
 System.err.println("ERROR: " + ex);
 }

 }

Once this method has been added to the Employees class, then the Java source should be loaded into
the database using the technique demonstrated in Recipe 15-2.

 Note You must include the OR REPLACE clause of the CREATE JAVA statement if the Employees source is

already contained in the database. If you do not include this clause, then you will receive an Oracle error.

Once the Java has been loaded into the database and compiled, you will need to create the call
specification that will be used by PL/SQL for accessing the Java stored procedure. The following code
demonstrates a call specification that will accept a parameter when invoked and pass it to the Java
stored procedure:

CREATE OR REPLACE PROCEDURE get_it_emps_by_dept(dept_id IN NUMBER)
 AS LANGUAGE JAVA

NAME 'Employees.getItEmpsByDept(int)';

The procedure can now be called by passing a department ID value as such:

SQL> exec get_it_emps_by_dept(60);
Alexander Hunold AHUNOLD
Bruce Ernst BERNST
David Austin DAUSTIN
Valli Pataballa VPATABAL
Diana Lorentz DLORENTZ

PL/SQL procedure successfully completed.

How It Works
The call specification is what determines how a Java stored procedure or function’s arguments are
mapped to PL/SQL arguments. To implement parameters, the call specification must match each
parameter in the stored procedure or function to an argument in the specification. As mentioned in
previous recipes, the call specification is a PL/SQL procedure itself, and each argument that is coded in
the specification matches an argument that is coded within the Java stored procedure.

The datatypes that Java uses do not match those used in PL/SQL. In fact, a translation must take
place when passing parameters listed as a PL/SQL datatype to a Java stored procedure that accepts
parameters as a Java datatype. If you are familiar enough with each of the two languages, the translation

CHAPTER 15 JAVA IN THE DATABASE

330

is fairly straightforward. However, there are always those cases where one is not sure what datatype to
match against. Table 15-1 lists some of the most common datatypes and how they map between Java
and PL/SQL. For a complete datatype map, please refer to the Oracle documentation at
http://download.oracle.com/docs/cd/B28359_01/java.111/b31225/chsix.htm#CHDFACEE.

Table 15-1. Datatype Map

SQL Datatype Java Type

CHAR oracle.sql.CHAR

VARCHAR java.lang.String

LONG java.lang.String

NUMBER java.lang.Integer,Java.lang.Float,Java.lang.Double,Java.
math.BigDecimal,Java.lang.Byte,Oracle.sql.NUMBER,Java.la
ng.Short,

DATE oracle.sql.DATE

TIMESTAMP oracle.sql.TIMESTAMP

TIMESTAMP WITH TIME ZONE oracle.sql.TIMESTAMPTZ

TIMESTAMP WITH LOCAL TIME ZONE oracle.sql.TIMESTAMPLTZ

BLOB oracle.sql.BLOB

CLOB oracle.sql.CLOB

Creating a PL/SQL call specification that includes parameters must use the fully qualified Java class
name when specifying the parameter datatypes in the Java class method signature. If an incorrect
datatype is specified, then an exception will be thrown. For instance, if you want to pass a VARCHAR2 from
PL/SQL to a Java stored procedure, the signature for the Java class method must accept an argument of
type java.lang.String. The following pseudocode demonstrates this type of call specification:

CREATE OR REPLACE PROCEDURE procedure_name(value VARCHAR2)
AS LANGUAGE JAVA

NAME ‘JavaClass.javaMethod(java.lang.String)’;

15-8. Creating and Calling a Java Database Function

Problem
You want to create a database function using the Java language.

http://download.oracle.com/docs/cd/B28359_01/java.111/b31225/chsix.htm#CHDFACEE

 CHAPTER 15 JAVA IN THE DATABASE

331

Solution
Create a function written in Java, and then create a call specification for the function. Ensure that the call
specification allows for the same number of parameters to pair up with the Java function and allows for a
returning result. For this recipe, you will add a function to the Employees Java class that will accept an
employee ID and return that employee’s job title. The following code is the Java source for the function
named getEmpJobTitle:

public static String getEmpJobTitle(int empId){
 String jobTitle = null;
 try {
 Connection conn = DriverManager.
 getConnection("jdbc:default:connection:");
 String sql = "SELECT JOB_TITLE " +
 "FROM EMPLOYEES EMP, " +
 "JOBS JOBS " +
 "WHERE EMP.EMPLOYEE_ID = ? " +
 "AND JOBS.JOB_ID = EMP.JOB_ID";

 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, empId);
 ResultSet rset = pstmt.executeQuery();
 while(rset.next()) {
 jobTitle = rset.getString(1);
 }
 pstmt.close();
 rset.close();
 } catch (SQLException ex){
 System.err.println("ERROR: " + ex);
 jobTitle = "N/A";
 }
 if (jobTitle == null){
 jobTitle = "N/A";
 }
 return jobTitle;

 }

Next is the call specification for the function:

CREATE OR REPLACE FUNCTION get_emp_job_title(emp_id IN NUMBER)
RETURN VARCHAR2 AS LANGUAGE JAVA

NAME 'Employees.getEmpJobTitle(int) return java.lang.String';

The function can now be called just like a PL/SQL function would. The following lines of code show
a SQL SELECT statement that calls the function passing an employee ID number of 200.

SQL> select get_emp_job_title(200) from dual;

GET_EMP_JOB_TITLE(200)
--

Administration Assistant

CHAPTER 15 JAVA IN THE DATABASE

332

How It Works
The difference between a stored procedure and a stored function is that a function always returns a
value. In the Java language, a method may or may not return a value. The difference between a PL/SQL
call specification for a Java stored procedure and a PL/SQL call specifcation for a Java function is that the
PL/SQL call specification will specify a return value if it is being used to invoke an underlying function.
In the solution to this recipe, the example PL/SQL call specification returns a VARCHAR2 data type because
the Java function that is being called will return a Java String.

15-9. Creating a Java Database Trigger

Problem
You want to create a database trigger that uses a Java stored procedure to do its work.

Solution
Create a Java stored procedure that does the work you require, and publish it as a Java stored procedure,
making it accessible to PL/SQL. Once it’s published, write a standard PL/SQL trigger that calls the Java
stored procedure.

For example, suppose you need a trigger to audit INSERT events on the EMPLOYEES table and record
them in another table. First, you must create the table that will be used to record each of the logged
events. The following DDL creates one:

CREATE TABLE EMPLOYEE_AUDIT_LOG (
employee_id NUMBER,

enter_date DATE);

Next, you will need to code the Java stored procedure that you want to have executed each time an
INSERT occurs on the EMPLOYEES table. Add the following Java method to the Employees class of previous
recipes in this chapter:
public static void employeeAudit(int empId){
 try {
 Connection conn = DriverManager.
 getConnection("jdbc:default:connection:");
 String sql = "INSERT INTO EMPLOYEE_AUDIT_LOG VALUES(" +
 "?, sysdate)";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, empId);
 pstmt.executeUpdate();
 pstmt.close();
 conn.commit();

 } catch (SQLException ex){
 System.err.println("ERROR: " + ex);
 }

 }

 CHAPTER 15 JAVA IN THE DATABASE

333

Next, the PL/SQL call specification for the Java stored procedure must be created. The following is
the code to implement the call specification:

CREATE OR REPLACE PROCEDURE emp_audit(emp_id NUMBER)
AS LANGUAGE JAVA

NAME 'Employees.employeeAudit(int)';

Finally, a trigger to call the EMP_AUDIT procedure must be created. The trigger will be executed on

INSERT to the EMPLOYEES table. The following code will generate the trigger to call EMP_AUDIT:

CREATE OR REPLACE TRIGGER emp_audit_ins
AFTER INSERT ON EMPLOYEES
FOR EACH ROW

CALL emp_audit(:new.employee_id);

Once all these pieces have been successfully created within the database, the EMP_AUDIT_INS trigger
will be executed each time there is an INSERT made to the EMPLOYEES table. In turn, the trigger will call the
EMP_AUDIT PL/SQL procedure, which calls the Java method contained within the Employees class. The
SQL*Plus output shown here demonstrates an INSERT into the EMPLOYEES table, followed by a query on
the EMPLOYEE_AUDIT_LOG table to show that the trigger has been invoked:

SQL> insert into employees values(
 employees_seq.nextval,
 'Jane',
 'Doe',
 'jane.doe@mycompany.com',
 null,
 sysdate,
 'FI_MGR',
 null,
 null,
 null,
 null);

1 row created.

SQL> select * from employee_audit_log;

EMPLOYEE_ID ENTER_DAT
----------- ---------
 265 02-NOV-10

How It Works
A Java-based trigger combines the power of Java code with the native ease of performing data
manipulation using PL/SQL triggers. Although creating a Java trigger requires more steps than using
native PL/SQL, the Java code is portable. If your application is supported on more than one database
platform, this lets you write code once and deploy it in many environments. It also makes sense to code
a trigger using Java if you require the use of Java libraries or technologies that are unavailable to PL/SQL.

mailto:doe@mycompany.com

CHAPTER 15 JAVA IN THE DATABASE

334

In the solution to this recipe, a trigger was created that will insert a row into an audit table each time
an INSERT is made on the EMPLOYEES table. The actual work is performed within a Java method that is
added to a Java class and loaded into the database. For more information on loading Java into the
database, please see Recipe 15-2. To invoke the stored Java method, you must create a PL/SQL call
specification, which maps the Java method to a PL/SQL stored procedure. The call specification can
accept zero, one, or many parameters, and it will seamlessly pass the parameters to the underlying Java
method. The final step to creating a Java trigger is to code a PL/SQL trigger that invokes the PL/SQL
stored procedure that was created.

Creating a Java-based trigger entails a series of steps. Each piece of code depends upon the others,
and like a domino effect, the trigger will call the procedure that in turn executes the Java method. This
solution opens the world of Java libraries and thousands of possibilities to the standard PL/SQL trigger.

15-10. Passing Data Objects from PL/SQL to Java

Problem
You have retrieved a row of data from the database using PL/SQL, and you want to populate a PL/SQL
object type with that data and then pass the populated data object to a Java procedure.

Solution
Create a PL/SQL object type, along with a call specification for the Java stored procedure that you want
to pass the object to. Ensure that the Java stored procedure accepts an object of type oracle.sql.STRUCT
and that the call specification accepts the PL/SQL object type you have created. For this recipe, the
example will demonstrate the creation of a Java method that will accept an Employee object and return
that employee’s corresponding department name. The Java code will be invoked from within a PL/SQL
anonymous block that queries each employee, loads an Employee object with the data, passes the object
to the Java method, and returns the result.

First, add the following Java method to the Employees class you’ve used with previous recipes in this
chapter:

public static String getEmpDepartment(oracle.sql.STRUCT emp) {

 String deptName = null;
 BigDecimal employeeId = null;
 try {
 Object[] attribs = emp.getAttributes();
 // Use indexes to grab individual attributes.
 Object empId = attribs[0];
 try{
 employeeId = (BigDecimal) empId;
 } catch (ClassCastException cce) {
 System.out.println(cce);
 }
 Connection conn = DriverManager.
 getConnection("jdbc:default:connection:");
 String sql = "SELECT DEPARTMENT_NAME " +
 "FROM DEPARTMENTS DEPT, " +
 "EMPLOYEES EMP " +
 "WHERE EMP.EMPLOYEE_ID = ? " +

 CHAPTER 15 JAVA IN THE DATABASE

335

 "AND DEPT.DEPARTMENT_ID = EMP.DEPARTMENT_ID";

 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, employeeId.intValue());
 ResultSet rset = pstmt.executeQuery();
 while(rset.next()) {
 deptName = rset.getString(1);
 }
 pstmt.close();
 rset.close();
 } catch (java.sql.SQLException ex){
 System.err.println("ERROR: " + ex);
 deptName = "N/A";
 }
 if (deptName == null){
 deptName = "N/A";
 }
 return deptName;

 }

Next, create the PL/SQL object that will contain employee information. The following SQL
statement will create this object:

CREATE TYPE Employee AS OBJECT (
emp_id NUMBER(6),
first VARCHAR2(20),
last VARCHAR2(25),
email VARCHAR2(25),
job VARCHAR2(10),
dept NUMBER(4)

);

Now you need to create the call specification for the Java method. Since the method is returning a
value, the call specification needs to be a PL/SQL function that accepts an Employee object and returns a
String value. The following code demonstrates such a call specification for the getEmpDepartment Java
method:

CREATE OR REPLACE FUNCTION get_emp_department (emp Employee) RETURN VARCHAR2 AS
LANGUAGE JAVA

NAME 'Employees.getEmpDepartment(oracle.sql.STRUCT) return java.lang.String';

Finally, call the new Java function from within an anonymous block. The following PL/SQL block
uses a cursor to traverse the EMPLOYEES table and populates an Employee object with each iteration. In
turn, the object is passed to the Java stored procedure via the PL/SQL function GET_EMP_DEPARTMENT, and
the corresponding DEPARTMENT_NAME is returned.

DECLARE
 CURSOR emp_cur IS
 SELECT * FROM EMPLOYEES;

 emp_rec emp_cur%ROWTYPE;

CHAPTER 15 JAVA IN THE DATABASE

336

 emp Employee;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 emp := Employee(emp_rec.employee_id,
 emp_rec.first_name,
 emp_rec.last_name,
 emp_rec.email,
 emp_rec.job_id,
 emp_rec.department_id);
 DBMS_OUTPUT.PUT_LINE(emp.first || ' ' || emp.last || ' - ' ||
 get_emp_department(emp));
 END LOOP;

END;

How It Works
Passing objects to Java code should be second nature to you since Java is an object-oriented language.
You can create PL/SQL objects as well and use them within your PL/SQL and Java mashup applications.
The solution to this recipe demonstrated the creation of an Employee object in PL/SQL that was passed to
Java.

To accept a PL/SQL object type, Java code must use a parameter of type oracle.sql.STRUCT in place
of the object. The STRUCT object is basically a container that allows the contents to be accessed by calling
the getAttributes method. In the solution to this recipe, the oracle.sql.STRUCT object is accepted in the
Java class as a parameter, and then the getAttributes method is called on it. This creates an array of
objects that contains the data. The Java stored procedure accesses the object using the 0 index position,
which is the first placeholder from the PL/SQL object. This position maps to the emp_id field in the
PL/SQL object. The Java class then uses that emp_id to query the database and retrieve a corresponding
DEPARTMENT_ID if it exists.

The call specification must accept the PL/SQL object type as a parameter but use the
oracle.sql.STRUCT object as the parameter in the Java source signature. When the object is passed to the
PL/SQL call specification procedure, it will be converted into an oracle.sql.STRUCT object, which is a
datatype that a Java class can accept.

Organizing your data into objects can be useful, especially when the object you are creating does
not match a table definition exactly. For instance, you could create an object that contains employee
information along with region information. There are no tables that contain both of these fields, so in
order to retrieve the information together, you are forced into either using a SQL query that contains
table joins or creating a database view. In such a case, it may be easier to populate the object using
PL/SQL and then hand it off to the Java program for processing.

15-11. Embedding a Java Class Into a PL/SQL Package

Problem
You are interested in creating a Java class and making each of its methods and attributes available to
PL/SQL in an organized unit of code.

Solution
Use a PL/SQL package to declare each of the attributes and methods that reside within the Java class,
and then create separate call specifications for each of the Java methods within the PL/SQL package

 CHAPTER 15 JAVA IN THE DATABASE

337

body. The following code demonstrates the creation of a PL/SQL package named EMP_PKG, which
declares each of the methods that reside within the Employee Java class and makes them available to
PL/SQL via call specifications that are implemented within the package body.

First, create the package header as follows:

CREATE OR REPLACE PACKAGE EMP_PKG AS

 PROCEDURE get_it_emps;
 PROCEDURE get_it_emps_by_dept(dept_id IN NUMBER);
 PROCEDURE emp_audit(emp_id NUMBER);

 FUNCTION get_emp_job_title(emp_id IN NUMBER) RETURN VARCHAR2;
 FUNCTION get_emp_department (emp Employee) RETURN VARCHAR2;

END;

Next, create the package body as follows, adding a call specification for each Java method or
attribute you plan to use:

CREATE PACKAGE BODY EMP_PKG AS

 PROCEDURE get_it_emps
 AS LANGUAGE JAVA
 NAME 'Employees.getItEmps()';

 PROCEDURE get_it_emps_by_dept(dept_id IN NUMBER)
 AS LANGUAGE JAVA
 NAME 'Employees.getItEmpsByDept(int)';

 PROCEDURE emp_audit(emp_id NUMBER)
 AS LANGUAGE JAVA
 NAME 'Employees.employeeAudit(int)';

 FUNCTION get_emp_job_title(emp_id IN NUMBER) RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'Employees.getEmpJobTitle(int) return String';

 FUNCTION get_emp_department (emp Employee) RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'Employees.getEmpDepartment(oracle.sql.STRUCT) return java.lang.String';

END;

Now the package can be used to call each of the underlying Java stored procedures instead of having
separate PL/SQL procedures and functions for each. The following anonymous block has been modified
to make use of the PL/SQL package for calling GET_EMP_DEPARTMENT rather than a stand-alone function.

DECLARE
 CURSOR emp_cur IS
 SELECT * FROM EMPLOYEES;

CHAPTER 15 JAVA IN THE DATABASE

338

 emp_rec emp_cur%ROWTYPE;
 emp Employee;
BEGIN
 FOR emp_rec IN emp_cur LOOP
 emp := Employee(emp_rec.employee_id,
 emp_rec.first_name,
 emp_rec.last_name,
 emp_rec.email,
 emp_rec.job_id,
 emp_rec.department_id);
 DBMS_OUTPUT.PUT_LINE(emp.first || ' ' || emp.last || ' - ' ||
 emp_pkg.get_emp_department(emp));
 END LOOP;

END;

How It Works
In programming, it is a best practice to organize code in a way that makes it easy to maintain. Placing
related procedures and functions inside a single PL/SQL package is one such application of that
approach. The same can be said for working with Java code in the database. A few Java stored
procedures or functions will not cause much trouble to maintain. However, once you start to
accumulate more than a handful within the same underlying Java class, then it is a good idea to
consolidate the call specifications into a single PL/SQL package.

In the solution to this recipe, all the Java stored procedures that are contained within the Employees
Java class have call specifications that are grouped into a single PL/SQL package. If you create one
PL/SQL package containing call specifications per each Java class that is loaded into the database, you
will have a nicely organized environment. In some cases, you may have more than one Java class that
contains the implementations that are to be used within a single PL/SQL application. In those cases, it
may make more sense to combine all call specifications into a single PL/SQL package.

Using PL/SQL package to group call specifications is a good idea. Not only will this technique make
for easier maintenance, but it also makes for more uniform applications with consistent interfaces.

15-12. Loading Java Libraries Into the Database

Problem
You want to create a Java class that utilizes some external Java libraries. To do so, you must load those
external libraries into the database.

Solution
Use the loadjava utility to store the external libraries into the database. In this example, a Java utility
class containing a method that uses the JavaMail API to send e-mail will be loaded into the database. The
method relies on some external Java libraries to use the JavaMail API. The following loadjava commands
demonstrate the loading of three essential JAR files for using the JavaMail API:

loadjava –u <username> mail.jar
loadjava –u <username> standard.jar
loadjava –u <username> activation.jar

 CHAPTER 15 JAVA IN THE DATABASE

339

Next, load the Java source for the JavaUtils class into the database:

CREATE OR REPLACE JAVA SOURCE NAMED "JavaUtils" AS
import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

public class JavaUtils {

 public static void sendMail(String subject,
 String recipient,
 String message) {
 try {

 Properties props = System.getProperties();
 props.put("mail.from", "me@mycompany.com");
 props.put("mail.smtp.host","company.smtp.server");
 Session session = Session.getDefaultInstance(props,null);
 Message msg = new MimeMessage(session);
 msg = new MimeMessage(session);
 msg.setSubject(subject);
 msg.setSentDate(new java.util.Date());
 msg.setFrom();

 msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse(recipient,
false));

 MimeBodyPart body = new MimeBodyPart();
 body.setText(message);
 Multipart mp = new MimeMultipart();
 mp.addBodyPart(body);
 msg.setContent(mp);

 Transport.send(msg);
 } catch (MessagingException ex) {
 Logger.getLogger(JavaUtils.class.getName()).log(Level.SEVERE, null, ex);
 }

 };

Compile the Java sources using the ALTER JAVA SOURCE command. The sources should compile
without issues since the JAR files containing the required library references have been loaded into the
database. If the JAR files had not been loaded, then the class would not compile successfully.

ALTER JAVA SOURCE "JavaUtils" RESOLVE;

Lastly, create the call specification for the sendMail Java stored procedure. In this case, a PL/SQL
package will be created that contains the call specification for sendMail.

mailto:me@mycompany.com

CHAPTER 15 JAVA IN THE DATABASE

340

CREATE OR REPLACE PACKAGE JAVA_UTILS AS
 PROCEDURE send_mail(subject VARCHAR2,
 recipient VARCHAR2,
 message VARCHAR2);

END;

CREATE OR REPLACE PACKAGE BODY JAVA_UTILS AS

 PROCEDURE send_mail(subject VARCHAR2,
 recipient VARCHAR2,
 message VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'JavaUtils.sendMail(java.lang.String, java.lang.String, java.lang.String)';

END;

The stored procedure can now be executed using the following command:

EXEC java_utils.send_mail('Test','myemail@mycompany.com','Test Message');

If the message is sucessfully sent, you will see the following output:

PL/SQL procedure successfully completed.

How It Works
Java libraries are packaged into JAR files so that they can be easily distributed. The loadjava utility can
be used to load Java libraries into the database. To use the utility, download the JAR files that you want to
load into the database, and place them into a directory that can be accessed by the database server.
Open the command prompt or terminal, traverse into that directory, and execute the loadjava utility,
using the –u flag to specify the database user and passing the name of the JAR file to load. If successful,
the JAR file will be loaded into the schema that you indicated with the –u flag, and you may begin to use
the libraries contained in the JAR file within your stored Java code.

The loadjava utility contains a number of options. For a complete listing of loadjava options, please
see the online Oracle documentation at
http://download.oracle.com/docs/cd/B28359_01/java.111/b31225/cheleven.htm.

Additional options are not necessary to load a JAR file into the schema that you indicate with the -u
flag. Since the JAR file consists of compiled Java libraries, there is no need to resolve the library once
loaded. As indicated in the solution to this recipe, you can begin to import classes from the libraries as
soon as they have been loaded.

15-13. Removing a Java Class

Problem
You want to drop a Java class from your database.

mailto:myemail@mycompany.com
http://download.oracle.com/docs/cd/B28359_01/java.111/b31225/cheleven.htm

 CHAPTER 15 JAVA IN THE DATABASE

341

Solution
Issue the SQL DROP JAVA command along with the schema and object name you want to drop. For
instance, you want to drop the Java source for the Employees class. In this case, you would issue the
following command:

DROP JAVA SOURCE “Employees”;

How It Works
There may come a time when you need to drop a Java class or sources from the database. For instance, if
you no longer want to maintain or allow access to a particular Java class, it may make sense to drop it.
The DROP JAVA SOURCE command does this by passing the name of the class or source as demonstrated
within the solution to this recipe.

 Note Be careful not to drop a Java class if other Java procedures or PL/SQL call specifications depend upon it.

Doing so will invalidate any dependent code, and you will receive an error if you try to execute. The data dictionary

provides views, such as DBA_DEPENDENCIES, that can be queried in order to find dependent objects.

Alternately, if you are on the database server, there is a dropjava utility that works in the same

fashion as the loadjava utility that was demonstrated in Recipe 15-3. To use the dropjava utility, issue
the dropjava command at the command line, and pass the database connect string using the –u flag
along with the name of the Java class or source you want to drop. The following example demonstrates
the command to drop the Employees Java class using the dropjava utility.

dropjava –u username/password@database_host:port:database_name Employees.class

The dropjava utility actually invokes the DROP JAVA SOURCE command. The downside to using the
utility is that you must be located on the database server to use it. I recommend using the DROP JAVA
SOURCE command from SQL*Plus if possible because it tends to make life easier if you are working within
SQL*Plus on a machine that is remote from the server.

15-14. Retrieving Database Metadata with Java

Problem
You are interested in retrieving some metadata regarding the database from within your Java stored
procedure. In this recipe, you want to list all the schemas within the database.

Solution
Create a Java stored procedure that utilizes the OracleDatabaseMetaData object to pull information from
the connection. In the following example, a Java stored procedure is created that utilizes the

CHAPTER 15 JAVA IN THE DATABASE

342

OracleDatabaseMetaData object to retrieve schema names from the Oracle connection. This Java method
will be added to the JavaUtils class.

public static void listDatabaseSchemas() {
 Connection conn = null;
 try {
 conn = DriverManager.getConnection("jdbc:default:connection:");
 OracleDatabaseMetaData meta = (OracleDatabaseMetaData) conn.getMetaData();

 if (meta == null) {
 System.out.println("Database metadata is unavailable");
 } else {
 ResultSet rs = meta.getSchemas();
 while (rs.next()) {
 System.out.println(rs.getString(1));
 }
 }
 } catch (SQLException ex) {
 System.out.println(ex);
 }

 }

The output from the execution of this Java method will be a list of all database schemas.

How It Works
Sometimes it may be useful to use Java code for obtaining database metadata. One such instance might
arise when you are developing a Java class that needs to access database metadata. Your code will be
easier to maintain and read if you use Java to obtain the metadata rather than a PL/SQL procedure. The
OracleDatabaseMetaData object was created for that purpose. In the solution to this recipe, the metadata
object is used to retrieve a listing of all database schemas. However, several other methods can be called
on the OracleDatabaseMetaData object to obtain other useful database metadata. For instance,
information about the underlying database tables or columns can also be obtained using this resource.
For a complete listing of the different options available via the OracleDatabaseMetaData object, please
refer to the online documentation at
www.oracle.com/technology/docs/tech/java/sqlj_jdbc/doc_library/javadoc/oracle.jdbc.driver.Orac
leDatabaseMetaData.html.

In the solution to this recipe, a Java Connection object is obtained using jdbc:default:connection.

The getMetaData method can be called on a Connection object and casted to an OracleDatabaseMetaData
object type. This solution demonstrates this technique and then uses the object to retrieve information
about the database.

http://www.oracle.com/technology/docs/tech/java/sqlj_jdbc/doc_library/javadoc/oracle.jdbc.driver.Orac

 CHAPTER 15 JAVA IN THE DATABASE

343

15-15. Querying the Database to Help Resolve Java

Compilation Issues

Problem
You are attempting to compile Java source within the database, and you are receiving an unsuccessful
result. You need to determine the underlying issue to the problem that is preventing the Java source
from compiling correctly.

Solution
Query the USER_ERRORS table to determine the cause of the compilation issue. For example, suppose the
JavaUtils class source is loaded into the database with an incorrect variable name. This will cause a
compiler error that will be displayed within the USER_ERRORS table. The following is an excerpt from a
SQL*Plus session where an attempt has been made to compile the code:

SQL> ALTER JAVA SOURCE "JavaUtils" RESOLVE;

Warning: Java altered with compilation errors.

Since compilation errors have occurred, query the USER_ERRORS table to determine the exact cause of

the error so that it can be repaired. The following query demonstrates this technique:

SQL> COL TEXT FOR A25
SQL> SELECT NAME, TYPE, LINE, TEXT
 2 FROM USER_ERRORS
 3 WHERE TYPE LIKE 'JAVA%';

NAME TYPE LINE TEXT
------------------------------ ------------ ---------- -------------------------
JavaUtils JAVA CLASS 0 ORA-29535: source require
 s recompilation

JavaUtils JAVA SOURCE 0 JavaUtils:51: cannot find
 symbol

JavaUtils JAVA SOURCE 0 symbol : variable me
JavaUtils JAVA SOURCE 0 location: class JavaUtils
JavaUtils JAVA SOURCE 0 ResultSet
 rs = me.getSchemas();

NAME TYPE LINE TEXT
------------------------------ ------------ ---------- -------------------------
JavaUtils JAVA SOURCE 0
 ^

JavaUtils JAVA SOURCE 0 1 error

CHAPTER 15 JAVA IN THE DATABASE

344

7 rows selected.

How It Works
The USER_ERRORS table contains the most recent errors generated by PL/SQL or Java code. It is the most
useful way to determine the issues that are causing compilation errors when attempting to resolve Java
source errors. Unlike PL/SQL, you are unable to issue the SHOW ERRORS command to display the most
recent compiler errors. The Java compiler, as well as the PL/SQL compiler, writes output to the
USER_ERRORS table, making it a beneficial tool when writing Java code for the database.

C H A P T E R 16

345

Accessing PL/SQL from JDBC,
HTTP, Groovy, and Jython

Java programs run on a virtual machine known as the Java virtual machine (JVM). A version of the JVM is
available for most operating systems and is deployed on millions of servers, desktops, phones, and even
Blu-ray players throughout the world. Because of the widespread availability of the JVM, Java is
considered a portable language: you can essentially write Java code once and run it just about anywhere,
whether it’s on a Linux box, a Mac, Android phone, or a Windows desktop.

The JVM has evolved over time, and Java is no longer the only language that can run on it. There
have been many languages implemented in Java that provide different features for those who enjoy
developing applications for the JVM. Each of these languages has its own syntax and constructs, and
many of them can be viable alternatives for developing scripts, desktop applications, or enterprise-level
web applications. As such, this chapter not only covers the ins and outs of accessing PL/SQL from Java
application code but also includes recipes for working with two popular dynamic languages that run on
the JVM: Jython and Groovy.

This chapter is not intended to be an overall instruction set for using Java or any other language on
the JVM. It is meant for the purpose of demonstrating how to access PL/SQL code from within these
languages. The Java online community is outstanding, and a plethora of resources are available on the
Web for learning about Java or other languages on the JVM. For more detailed information, please
consult those resources, because this chapter will only provide solutions targeting PL/SQL integration.

16-1. Accessing a PL/SQL Stored Procedure via JDBC

Problem
You are writing a Java application that uses JDBC to access data, but you also want to call some PL/SQL
stored procedures from within your Java application.

Solution
Use the JDBC API to connect to the database, and then execute prepareCall(), passing a string to it that
consists of a PL/SQL code block that calls the stored procedure. For example, consider a stand-alone
Java class that contains a method named increaseWage(). This method uses JDBC to obtain a database
connection, create a CallableStatement, and then invoke the PL/SQL stored procedure that passes in the
required variables.

import java.sql.*;
import oracle.jdbc.*;

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

346

public class EmployeeFacade {

 public void increaseWage()
 throws SQLException {
 int ret_code;
 Connection conn = null;
 try {
 //Load Oracle driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 //Obtain a connection

 conn = DriverManager.getConnection("jdbc:oracle:thin:@hostname:port_number:mydb",
 "user",
"password");
 int emp_id = 199;
 double increase_pct = .02;
 int upper_bound = 10000;
 CallableStatement pstmt =
 conn.prepareCall("begin increase_wage(?,?,?); end;");
 pstmt.setInt(1, emp_id);
 pstmt.setDouble(2, increase_pct);
 pstmt.setInt(3, upper_bound);
 pstmt.executeUpdate();

 pstmt.close();
 conn.commit();
 conn.close();
 System.out.println("Increase successful");
 } catch (SQLException e) {ret_code = e.getErrorCode();
 System.err.println(ret_code + e.getMessage()); conn.close();}
 }

 public static void main(String[] args){
 EmployeeFacade facade = new EmployeeFacade();
 try {
 facade.increaseWage();
 } catch (SQLException e){
 System.err.println("A database exception has occurred.");
 }
 }

}

Running this code within an integrated development environment such as NetBeans would result in
the following output:

run:
Increase successful
BUILD SUCCESSFUL (total time: 4 seconds)

The EmployeeFacade class contains a main() method that is used to initiate the execution of the
increaseWage() method. The increaseWage() method initializes three variables that are passed to the
increase_wage PL/SQL stored procedure using a CallableStatement.

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

347

How It Works
It is possible to invoke a PL/SQL stored procedure from a JDBC call just as if you were issuing a call from
PL/SQL. You can do so by passing a PL/SQL code block that contains the procedure call as a string to the
JDBC connection. In the solution to the example we’ve chosen for this recipe, a Java class named
EmployeeFacade contains a method that makes a JDBC call to invoke a stored procedure. If you are
unfamiliar with Java and database connectivity, you can see that using JDBC is very methodical. There
are several steps that need to be taken in order to obtain a connection to the database, followed by the
steps to perform the database transaction and lastly to commit the changes and close all of the JDBC
constructs.

Any Java work that is done using the JDBC API must include an exception handler for the
java.sql.SQLException. As the increaseWage() method demonstrates, the SQLException is handled using
a Java try-catch block. Prior to the try-catch block, a couple of variables are created that the rest of the
method will use. One of the variables is the java.sql.Connection, which is to be used to make a
connection to the database, execute the call, and then finally close the connection. In the next couple of
lines, a try-catch block is started, and a connection is obtained to the Oracle Database using the
DriverManager class. The getConnection() method accepts a JDBC URL pertaining to a database as well
as a user name and password.

 Note It is important to maintain a close watch on JDBC connections. They can be costly for performance, and

only a limited number of connections is usually available for use. For this reason, a connection should always be

obtained, used, and then closed.

If a connection is successfully made to the database, then a CallableStatement is created that
performs all the work against the database. If you wanted to issue a query, then you would use a
PreparedStatement instead because CallableStatements are most useful for making PL/SQL calls. A
string containing a PL/SQL code block is used to invoke the call to the PL/SQL stored procedure. The call
is a bit different from native PL/SQL because it includes Java bind variables that represent the
parameters that need to be passed into the procedure. A bind variable is represented by a question mark
(?) character, and subsequent setter methods will be used to set values for each bind variable. After the
CallableStatement’s prepareCall() method is invoked, variables are passed to the procedure using a
series of setXXX() methods on the CallableStatement. The set methods correlate with the type of data
that is being passed to the stored procedure, and they provide a positional parameter that maps the
variable to the bind variable position in the call. For instance, the first setInt(1, emp_id) method
contains an integer variable, emp_id, and it will be passed to the bind variable in the first position within
the call.

After all the variables have been set, the executeUpdate() method is called in order to execute the
call to the procedure. If successful, program execution will continue. However, if unsuccessful for some
reason, then a java.sql.SQLException will be thrown that will cause the execution of the Java program to
be passed to the catch block. Finally, if the transaction was a success, then the connection commits the
transaction, and the CallableStatement is closed, followed by the closing of the connection. You will
notice that the throws SQLException clause has been placed within the method declaration. When any
Java method contains a throws clause within the declaration, then you must code an exception handler
for any Java code that calls the method. In this solution, the throws clause has been put into place to
handle any exceptions that may be raised when closing the connection within the exception-handling

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

348

catch block. For more information on Java exception handling, please see the online documentation
available at http://download.oracle.com/javase/tutorial/essential/exceptions/handling.html.

The JDBC API can be used to call PL/SQL stored procedures by passing a PL/SQL code block in the
form of a Java String to a CallableStatement object. The majority of the code using JDBC is spent
creating and closing the database connections as well as the CallableStatements. If you are unfamiliar
with JDBC, then you can learn more about it at www.oracle.com/technetwork/java/overview-
141217.html. It can be used for creating small Java programs or enterprise-level Java applications. The
JDBC API has been around since the early days of Java, so it is quite mature and allows you to access the
database and your PL/SQL programs directly.

16-2. Accessing a PL/SQL Stored Function from JDBC

Problem
You want to utilize a PL/SQL function from a Java application that uses the JDBC API to connect to an
Oracle Database and returns a value to the Java application.

Solution
Use the JDBC API and a CallableStatement to invoke the PL/SQL function by passing a Java String
containing the function call to the CallableStatement. The following example demonstrates a Java
method that accepts a parameter of type double and then makes a JDBC call to the PL/SQL function
calc_quarter_hour using the parameter. It is assumed that this Java method is to be added into the class
that was created in Recipe 16-1.

public void calcQuarterHour(double hours)
 throws SQLException {
 float returnValue;
 int ret_code;
 Connection conn = null;
 try {
 //Load Oracle driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 //Obtain a connection

 conn = DriverManager.getConnection("jdbc:oracle:thin:@hostname:1521:mydb",
 "user", "password");

 CallableStatement pstmt =
 conn.prepareCall("{? = call calc_quarter_hour(?)}");

 pstmt.registerOutParameter(1, java.sql.Types.FLOAT);
 pstmt.setDouble(2, hours);
 pstmt.execute();
 returnValue = pstmt.getFloat(1);
 pstmt.close();
 conn.commit();
 conn.close();
 System.out.println("The calculated value: " + returnValue);
 } catch (SQLException e) {

http://download.oracle.com/javase/tutorial/essential/exceptions/handling.html
http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/overview-141217.html

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

349

 ret_code = e.getErrorCode();
 System.err.println(ret_code + e.getMessage());
 conn.close();
 }

 }

Update the main method from the class that was created in Recipe 16-1 to the following code in
order to make a call to the new calcQuarterHour method.

public static void main(String[] args) {
 EmployeeFacade facade = new EmployeeFacade();
 try {
 facade.calcQuarterHour(7.667);
 } catch (SQLException e) {
 System.err.println("A database exception has occurred.");
 }
 }

Running this code within an integrated development environment such as NetBeans would result in

the following output:

run:
The calculated value: 7.75
BUILD SUCCESSFUL (total time: 1 second)

Values can be passed as parameters from Java to PL/SQL, and in turn, PL/SQL can pass return

values back to Java. This helps form a seamless integration between the two languages.

How It Works
Calling a PL/SQL function from a JDBC application is not very much different from using native PL/SQL.
The biggest difference is that you need to use the JDBC API to make the database call and to set and
retrieve values from the database. The solution to this recipe contains a Java method that accepts a
double value representing a number of hours. The method connects to the Oracle Database using the
JDBC, calls the PL/SQL function using a CallableStatement, and then returns the results.

To make the connection, the database driver is first registered using the
DriverManager.registerDriver() method and passing the appropriate driver for Oracle Database. Next,
a connection is obtained using the DriverManager.getConnection() method by passing the URL for the
Oracle Database that will be used, along with the appropriate user name and password. In Recipe 16-1,
obtaining JDBC connections is discussed in more detail. If you haven’t yet read Recipe 16-1 and are
unfamiliar with JDBC, we recommend you read it for more information on this important aspect of
using the JDBC API.

Once a connection has been obtained, a CallableStatement is created by calling the
java.sql.Connection prepareCall() method and passing a Java String that contains the call to the
PL/SQL function. The function call is in the following format:

{? = call calc_quarter_hour(?)}

The String is surrounded by curly braces ({}), and the call to the PL/SQL function is preceded by
the ? = characters. The question mark (?) character represents a bind variable in a Java prepared
statement. Bind variables are used to represent the returning value as well as the parameter value that

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

350

will be passed into the function. The first ? character represents the returning value, whereas the ?
character within the parentheses correlates to the parameter being passed to the function. The PL/SQL
function is invoked using the call keyword followed by the function name.

The next line of code registers the return value using the CallableStatement
registerOutParameter() method. This method accepts the bind variable position as its first argument
and accepts the datatype of the value as the second argument. In this example, the datatype is
java.sql.Types.FLOAT, which correlates to a PL/SQL float type. Many different types are available within
java.sql.Types, and if you are using a Java integrated development environment (IDE) that contains
code completion, then you should see a list of all available types after you type the trailing dot when
declaring java.sql.Type. Next, the parameter that will be passed into the PL/SQL function is set by
calling the setDouble() method and passing the bind variable position along with the value. Lastly, the
CallableStatement is executed by invoking the execute() method.

If the function call is successful, then the return value of the function can be obtained by calling the
getFloat() method on the CallableStatement and passing the bind variable position. If you were calling
a PL/SQL function that had a different return type, then you would use the getter method that correlates
to the return type. This method will return the value of the call, so it should be assigned to a Java
variable. In the solution, returnValue is the variable that is used to hold the value returned from the
function call. Finally, the CallableStatement is closed, and the transaction is committed by calling the
commit() method on the java.sql.Connection.

The entire method is enclosed within a Java exception-handling try-catch block. Code that is
contained within the try block may or may not throw an exception. If an exception is thrown, then it can
be caught by a subsequent catch block. For more information on Java exception handling, please see the
documentation at http://download.oracle.com/javase/tutorial/essential/exceptions/handling.html.

Interacting with PL/SQL functions from within a Java application can be quite powerful. You will
gain the most benefit if the function that you are calling is working with the data. Any application that is
not stored in the database will incur at least a minor performance hit when working with the database
because of connections and round-trips to and from the database server. If you have a PL/SQL function
that works with the database, then it can be more efficient to call the PL/SQL function from your Java
application rather than reproducing that function in Java code.

16-3. Accessing PL/SQL Web Procedures with HTTP

Problem
You are developing a Java web application that uses an Oracle Database. You have already created a
PL/SQL web application that displays some particular data from your database that is generated from an
input identifier. You want to use the PL/SQL web application to display that data by passing the
necessary input from the Java web application.

Solution
Write your PL/SQL web program to accept parameter values within a URL. Pass the values from your
Java web application to the PL/SQL application by embedding them within the URL that calls it. When
the URL is clicked, then it will redirect control to the PL/SQL application, passing the parameters that
are required to display the correct data. Suppose, for example, that you are writing a Java web
application that generates a list of employees on a web page. Suppose further that you have already
written PL/SQL web application that, given an employee_id, displays employee record details in a
browser. You want to combine that functionality with your Java program so that when you click one of
the employees in the list generated by the Java web program, it passes the selected employee’s ID to the

http://download.oracle.com/javase/tutorial/essential/exceptions/handling.html

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

351

PL/SQL web program. In turn, the PL/SQL program will display the detail for that ticket. In the following
example, the EMP_RPT package that was introduced in Recipe 14-4 is accessed via a Java Server Faces
page.

 Note JSF is the Java standard for creation of server-side user interfaces. To learn more about this technology,

please see the online documentation at www.oracle.com/technetwork/java/javaee/javaserverfaces-

139869.html.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html">

 <body>

 <ui:composition template="layout/my_layout.xhtml">

 <ui:define name="body">
 <f:view id="employeeView">
 <h:form id="employeeResults">
 <center>

 <h:messages id="messages"
 errorClass="error"
 infoClass="info" />

 Employee Listing

 <h:dataTable id="employeeList"
 rows="20"
 value="#{employeeList}"
 var="emp">
 <f:facet name="header">
 <h:column >
 <h:outputText value="First Name"/>
 </h:column>
 <h:column >
 <h:outputText value="Last Name"/>

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

352

 </h:column>
 <h:column >
 <h:outputText value="Email"/>
 </h:column>
 </f:facet>

 <h:column id="firstNameCol">
 <h:outputText id="firstName" value="#{emp.firstName}"/>
 </h:column>
 <h:column id="lastNameCol">
 <h:outputText id="lastName" value="#{emp.lastName}"/>
 </h:column>

 <h:column id="emailCol">
 <h:outputLink value="http://my-oracle-application-
server:7778/DAD/emp_rpt.rpt"
 target="_blank">
 <f:param name="emp_id" value="#{emp.employeeId}"/>
 <h:outputText id="email" value="#{emp.email}"/>
 </h:outputLink>
 </h:column>

 </h:dataTable>

 </center>
 </h:form>

 </f:view>

 </ui:define>

 </ui:composition>

 </body>
</html>

The JSF tags in this example would generate a web page that looks similar to Figure 16-1. However,
it is important to note that JSF contains template functionality, so the look and feel of the user interface
can be changed significantly if a different template were applied.

http://my-oracle-application-server:7778/DAD/emp_rpt.rpt
http://my-oracle-application-server:7778/DAD/emp_rpt.rpt
http://my-oracle-application-server:7778/DAD/emp_rpt.rpt

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

353

Figure 16-1. Employee listing JSF web page

For the sake of brevity, the Java code will not be displayed, because it is not essential for this

solution. However, if you want to learn more about writing Java web applications utilizing the Java
Server Faces web framework, please see the online documentation available at
www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html.

When you look at the JSF page output on your monitor, you’ll see that the EMAIL column values are
blue. This signifies that they are links that will take you to another page when selected with the mouse.
In this case, the link will redirect users to a PL/SQL application that accepts the employee ID as input
and in turn displays a result. Figure 16-2 shows the output from the PL/SQL web application when the e-
mail user name SKING is selected from the JSF page.

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

354

Figure 16-2. PL/SQL web application output

How It Works
Developing Java web applications and PL/SQL web applications can be quite different. However,
accessing one from the other can be quite easy and can create powerful solutions. In this recipe, a
mashup consisting of a standard web URL passes data from a Java application to a PL/SQL stored
procedure, and then the PL/SQL stored procedure displays content via a web page.
The PL/SQL stored procedure in this recipe utilizes the built-in UTL_HTTP package to display content in
HTML format via the Web. The procedure accepts one argument, an EMPLOYEE_ID. The given EMPLOYEE_ID
field is used to query the database, and the content that is retrieved is displayed. The procedure is
accessible from the Web because a Data Access Descriptor (DAD) has been created on the web server,
which allows access to a particular schema’s web-accessible content. Using the DAD, a URL
incorporating the host name, the DAD, and the procedure to be used can access the stored procedure.
Please see Recipe 14-1 to learn more about creating DADs. For more details regarding the creation of
web content using PL/SQL, please refer to Chapter 14.

The Java application Extensible Hypertext Markup Language (XHTML) page that is displayed in the
solution to this recipe creates a listing of employee names by querying the database using EJB
technology. Enterprise Java Beans (EJB) is part of the Java Enterprise Edition stack that is used for object
relational mapping of Java code and database entities. For more information regarding EJB technology,
please refer to the documentation at www.oracle.com/technetwork/java/index-jsp-140203.html.

 The important code for this particular recipe is the web page code that resides within the Java
Server Faces XHTML page. The generated list of employee names is a list of URLs that contain the host
name of the Oracle Application Server, the DAD for the schema containing the PL/SQL you want to
access, and the name of the PL/SQL stored procedure, which is EMP_RPT.RPT in this case. The URL also
contains an embedded parameter that is passed to the stored procedure upon invocation. The following
code shows an example of a URL that is generated by the Java application:

The code that generates this URL is written in Java Server Faces using Facelets markup, as shown
here:

<h:outputLink value="http://my-oracle-application-server:port/DAD/emp_rpt.rpt"
 target="_blank">

http://www.oracle.com/technetwork/java/index-jsp-140203.html
http://my-web-server:port/hr/EMP_RPT.RPT?emp_id=200
http://my-oracle-application-server:port/DAD/emp_rpt.rpt

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

355

 <f:param name="emp_id" value="#{emp.employeeId}"/>
 <h:outputText id="email" value="#{emp.email}"/>
</h:outputLink>

The &emp_id=200 portion of the URL is the parameter name and value that is passed to the

EMP_RPT.RPT procedure when called. In the case of the JSF markup, #{emp.employeeId} will pass this
value as a parameter to the URL. In turn, the EMP_RPT.RPT procedure queries the EMPLOYEES table for the
given EMPLOYEE_ID and displays the record data. In a sense, the Java application performs a redirect to
the PL/SQL stored procedure, as illustrated by Figure 16-3.

Figure 16-3. JSF to PL/SQL web redirect

 Note Facelets is an open source web framework that is the default view handler technology for JSF.

Any two languages that can be used to develop web applications can be used to create mashups in a
similar fashion. A regular HTML page can include links to any PL/SQL stored procedure that has been
deployed and made available using a DAD. This is a simple technique that can be used to allow
applications to use data that resides in a remote database.

16-4. Accessing PL/SQL from Jython

Problem
You are working with a Jython program and want to call some PL/SQL stored procedures or functions
from it.

Solution #1

Use Jython’s zxJDBC API to obtain a connection to the Oracle Database, and then call the PL/SQL stored
procedure passing parameters as required. The following code is an example of a Jython script that
performs these tasks:

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

356

from __future__ import with_statement
from com.ziclix.python.sql import zxJDBC

Set up connection variables
jdbc_url = "jdbc:oracle:thin:@host:1521:dbname"
username = "user"
password = "password"
driver = "oracle.jdbc.driver.OracleDriver"

obtain a connection using the with-statment
with zxJDBC.connect(jdbc_url, username, password, driver) as conn:
 with conn:
 with conn.cursor() as c:
 c.callproc('increase_wage',[199,.03,10000])
 print ‘Procedure call complete’

 conn.commit()

This example does not display any real output; it only calls the INCREASE_WAGE procedure and
performs a commit. After the procedure is called, a line of text is printed to alert the user that the
procedure call is complete.

Solution #2

Use a Python web framework, such as Django, along with Jython to create a web application for
deployment to a Java application server. Use the selected web framework’s built-in syntax to invoke the
stored procedure or function call.

DJANGO

Django is a popular web framework that is used with the Python programming language. Django has

worked with Jython since the release of Jython 2.5. Django takes a model-view-controller approach to

web design, whereas all code is separated from web pages. The web pages use templating that makes it
easy to create dynamic and expressive web pages. Django uses an object-oriented approach to working

with the database that is known as object relational mapping. For more information on the Django

framework, please visit the Django web site at www.djangoproject.com/ and the Django-Jython project

that is located at http://code.google.com/p/django-jython/.

For example, here’s how you might use the Django web framework to create a call to the PL/SQL

stored procedure CALC_QUARTER_HOUR that was demonstrated in Recipe 4-1. The following code
demonstrates an excerpt taken from a Django view to make a call to an Oracle PL/SQL function:

Views.py
from django.db import connection

def calc_hours(self, hours_in):

http://www.djangoproject.com
http://code.google.com/p/django-jython

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

357

 cursor = connection.cursor()
 ret = cursor.callproc("CALC_QUARTER_HOUR", (hours_in))# calls PROCEDURE OR FUNCTION
 cursor.close()

 return ret

This view code only demonstrates a function written in Python or Jython that will perform the call to
the database and return a result.

How It Works
The Jython language is an incarnation of the Python language that has been implemented on the JVM.
Using Jython provides a developer with all the corresponding syntax and language constructs that the
Python language has to offer and allows them to be used to write applications running on the JVM.
Furthermore, Jython applications have access to all the underlying libraries that the Java platform has to
offer, which is a tremendous asset to any developer. Jython is one of the first additional languages
developed to run on the JVM. It has matured over the years, although it remains a bit behind its sister
language Python in release number. Jython can be used for developing scripts, desktop applications, and
enterprise-level web applications.

Using the zxJDBC API to Solve the Problem

In the first solution to this recipe, Jython’s zxJDBC API is used to perform tasks against an Oracle
Database. zxJDBC is an extension of the Java JDBC API that allows Jython developers to program JDBC
calls in a Python-like syntax. Working with zxJDBC can be very efficient. It is similar to working with
regular Java JDBC code, except the syntax makes development a bit easier since there are fewer lines of
code to maintain. zxJDBC contains the function callproc() that can be used to make calls to PL/SQL
procedures or functions. Once you have obtained a database connection, you allocate a cursor from the
connection and invoke that cursor's callproc() function. The callproc() function accepts one
argument, which is the name of the PL/SQL procedure to be called. The called procedure or function will
return the results to the caller in a seamless manner.

The zxJDBC API is useful for writing stand-alone Jython applications or scripts. Many developers

and database administrators use Jython to script their nightly jobs, allowing zxJDBC to invoke PL/SQL
functions and stored procedures. This is one alternative to using Oracle Scheduler for executing
database tasks, and it can allow for much more flexibility because all the libraries available for use on the
JVM are at your disposal.

Using Django to Solve the Problem

Although zxJDBC is a great way to work with the database, there are other techniques that can be used
for creation of web content that accesses PL/SQL. Many Jython users create web applications using
different Python web frameworks. One such Python web framework is Django, and it can be used along
with Jython to productively create web applications that run on the Java platform. The Django
framework uses an object-oriented approach to work with the database. In other terms, Django provides
an object-relational mapping solution that allows developers to work with Python objects representing
database tables rather than working directly with SQL.

Django uses a model.py file to map a database table to a Python object. A views.py file is used to

implement separate views for the web site, and a urls.py file is used to contain the valid URL mappings

CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

358

for a Django application. In the solution to this recipe, a Python function that would go into the views.py
file is displayed. The purpose of this function is to make a connection to the database and invoke a
PL/SQL function call. The Django framework handles database connections for you by declaring some
parameters for the database connection within a settings.py file for the project. As you can see from the
example, obtaining a connection is trivial because you merely import it from the django.db package. The
code is similar to using zxJDBC for calling a PL/SQL stored procedure or function. The cursor’s
callProc() function is used to make the function call, and the syntax for performing that task is as
follows:

cursor.callProc(function_or_procedure_name,(parameter_one, parameter_two, etc))

The function or procedure name should be a string value, and the parameters can passed as a tuple
or listed one by one, separated by commas. If calling a PL/SQL function, the callProc() function should
be assigned to a variable because there will be a return result. Lastly, the cursor should be closed in order
to release resources. Again, when using the Django framework connections to the database will be
handled for you, so there is no need to worry about closing connections after a database call has been
made.

For more information on using the Django web framework, please visit the project home page at

www.djangoproject.com. To use the Django web framework with Jython, you will also need to include the
django-jython site package at http://code.google.com/p/django-jython/.

16-5. Accessing PL/SQL from Groovy

Problem
You are writing a Groovy program and want to call some PL/SQL stored procedures or functions from it.

Solution
Use GroovySQL to establish a database connection, and make the call to the PL/SQL stored program. For
example, here’s how you would use of GroovySQL to connect to an Oracle Database and call a PL/SQL
function:

import groovy.sql.Sql
import oracle.jdbc.driver.OracleTypes

Sql sql = Sql.newInstance("jdbc:oracle:thin:@hostname:1521:dbname",

"username","password","oracle.jdbc.driver.OracleDriver")
dept_id = 50

sql.call('{? = call calc_quarter_hour(?)}', [Sql.DOUBLE, 6.35]) { qtr_hour->
 println qtr_hour
}

Short and to the point, the Groovy script in this example connects to an Oracle Database, executes a
PL/SQL function call, returns a value, and prints the result.

http://www.djangoproject.com
http://code.google.com/p/django-jython

 CHAPTER 16 ACCESSING PL/SQL FROM JDBC, HTTP, GROOVY, AND JYTHON

359

How It Works
Groovy is a unique JVM language that is useful for developing productive and efficient applications. It
can be used for developing a wide variety of applications, from scripts to enterprise-level web
applications. The syntax of the Groovy language is unlike that of other languages on the JVM because the
Groovy compiler allows you to write Java code and it will be deemed as valid Groovy. However, Groovy
also has its own syntax that can be combined with Java syntax if you want to do so. Its flexibility allows
for beginners to pick up the language as they go and allows advanced Groovy coders to write code in
Groovy syntax that is magnitudes smaller than the amount of lines taken to write the same code in Java.

In the solution to this example, the Groovy SQL API is used to connect to an Oracle Database and

issue a PL/SQL function call. The top of the script contains import statements. The imports in Groovy
work in the same manner as Java imports. The groovy.sql.Sql import pulls all the Groovy SQL
functionality into the script. The second import is used to pull in the Oracle driver.

The database connection is made by using the Sql.newInstance method and passing the JDBC URL

for the database along with the user name, password, and database driver class. The actual PL/SQL
function call occurs with the Sql instance’s call() method, and the syntax is very similar to that of Java’s
JDBC API, whereas you pass a string that is enclosed in curly braces in the following format. The
following example demonstrates a call to the CALC_QUARTER_HOUR PL/SQL function that was written in
Recipe 4-1:

{? = call calc_quarter_hour(?)}

The question mark characters (?) correlate to bind variables. The second argument that is passed to
the call() method is a list of parameters including the return type and value of the parameter that will
be passed to the PL/SQL function. In this case, the PL/SQL function’s return type is
groovy.sql.Sql.DOUBLE, and the value that will be passed to the function is 6.35. The code that follows
the call is some Groovy syntactic sugar and is otherwise known as a closure. By specifying curly braces
({}) after the function call, you are telling Groovy to pass any return values to the variable contained
within the braces. In this case, qtr_hour will contain the result from the PL/SQL function call, and it
prints the result upon return via use of the closure -> notation and then specifying a print statement
afterward.

If you have never seen Groovy code before, this syntax will seem a bit awkward. However, once you

become used to the syntax, it will become a powerful asset to your tool box. It is easy to see that taking
standard Java JDBC implementations for accessing PL/SQL and translating them into a different
language will allow for the same PL/SQL connectivity across most languages that run on the JVM. For
more information regarding the use of Groovy, Groovy SQL, or closures in Groovy, please see the online
documentation at http://groovy.codehaus.org/Beginners+Tutorial.

http://groovy.codehaus.org/Beginners+Tutorial

C H A P T E R 17

361

Unit Testing With utPLSQL

Testing is a necessary evil of the application development process. Sadly, testing is oftentimes
overlooked or bypassed when time is short. Distribution of untested or undertested code can lead to
code that is riddled with bugs and to disappointed users. Unit testing with a well-constructed framework
can help to alleviate some of the time that it takes to conform to a well-tested development process.

There are a few different options available to you for testing your PL/SQL code. SQL Developer
provides some good debugging options that you can read about in Recipe 12-12. You can also use
DBMS_OUTPUT statements within your code to display the results of variables as your code executes. This is
a good technique for helping to pinpoint issues in your code and one you can read about in Recipe 17-1.
There are also unit-testing frameworks available that will help you to write unit tests for your PL/SQL
code objects. Although not covered in this book, the PLUTO (PL/SQL Unit Testing for Oracle) framework
(http://code.google.com/p/pluto-test-framework/) is one such framework. Another is the utPLSQL unit-
testing framework, and this chapter will focus on utPLSQL since it is more widely adopted than the
others.

The utPLSQL unit-testing framework can alleviate some of the pain of unit testing. The framework is
easy to use and performs nicely for testing code under every circumstance that can be imagined. There
are also many options in utPLSQL that can be used to enhance your unit testing process. This chapter
includes recipes that show how to use the framework for testing PL/SQL objects, how to create test
suites, and how to automate your unit tests. In the end, you will learn to make the unit testing process a
functional part of your development process. As a result of using unit testing, your applications will be
successful, and you will spend much less time maintaining the code base.

17-1. Testing Stored PL/SQL Code Without Unit Tests

Problem
You want to ensure that a block of PL/SQL code is working properly, but don’t want to take the time to
write a unit test.

Solution
 Wrap the code in DBMS_OUTPUT statements that display or print the results of intermediate and final
computations and the results of complex conditional steps and branches. This will enable you to see the
path that the code is taking when the function is called with specified parameters. The following
example demonstrates this tactic for placing comments into strategic locations within a PL/SQL code
block in order to help determine if code is functioning as expected. For example, suppose you wish to
quickly test the function we introduced in the example for Recipe 4-1. Here’s how you’d modify it to
quickly test the correctness of its results.

http://code.google.com/p/pluto-test-framework

CHAPTER 17 UNIT TESTING WITH UTPLSQL

362

CREATE OR REPLACE
FUNCTION CALC_QUARTER_HOUR(HOURS IN NUMBER) RETURN NUMBER AS
 CALCULATED_HOURS NUMBER := 0;
BEGIN

 -- if HOURS is greater than one, then calculate the decimal portion
 -- based upon quarterly hours
 IF HOURS > 1 THEN
 -- calculate the modulus of the HOURS variable and compare it to
 DBMS_OUTPUT.Put_LINE('The value passed in was greater than one hour...');
 -- fractional values
 IF MOD(HOURS, 1) <=.125 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion < .125');
 CALCULATED_HOURS := substr(to_char(HOURS),0,1);
 ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .375');
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
 ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .625');
 CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
 ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .825');
 CALCULATED_HOURS := SUBSTR(TO_CHAR(HOURS),0,1) + MOD(.75,1);
 ELSIF MOD(HOURS, 1) > .825 AND MOD(HOURS,1) <= .999 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .999');
 CALCULATED_HOURS := (substr(to_char(HOURS),0,1) + 1) + MOD(.00,1);
 ELSE
 DBMS_OUTPUT.Put_LINE('The hours passed in will use standard rounding');
 CALCULATED_HOURS := ROUND(HOURS,1);

 END IF;

 ELSE
 -- if HOURS is less than one, then calculate the entire value
 DBMS_OUTPUT.Put_LINE('Less than 1 hour was passed in...');
 -- based upon quarterly hours
 IF HOURS > 0 AND HOURS <=.375 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion < .125');
 CALCULATED_HOURS := .25;
 ELSIF HOURS > .375 AND HOURS <= .625 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .625');
 CALCULATED_HOURS := .5;
 ELSIF HOURS > .625 AND HOURS <= .825 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .825');
 CALCULATED_HOURS := .75;
 ELSIF HOURS > .825 AND HOURS <= .999 THEN
 DBMS_OUTPUT.Put_LINE('The decimal portion <= .999');
 CALCULATED_HOURS := 1;
 ELSE
 DBMS_OUTPUT.Put_LINE('The hours passed in will use standard rounding');
 CALCULATED_HOURS := ROUND(HOURS,1);
 END IF;

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

363

 END IF;

 RETURN CALCULATED_HOURS;

END CALC_QUARTER_HOUR;

When the CALC_QUARTER_HOUR function is executed with a value of 7.34, the comments will be

displayed as seen in the next snippet from a SQL*Plus session.

SQL> set serveroutput on
SQL> select calc_quarter_hour(7.34) from dual;

CALC_QUARTER_HOUR(7.34)

 7.25

The value passed in was greater than one hour...
The decimal portion <= .375

How It Works
The use of DBMS_OUTPUT statements within PL/SQL code for displaying data or information pertaining to
the functionality of the code has been a great tactic for testing code in any language. As a matter of fact,
it is probably one of the most widely used techniques for debugging code. The ability to see values as
they are calculated or to determine how a condition is being handled can be very useful for determining
whether your code is executing as it should.

In order to use DBMS_OUTPUT statements for testing your code, you must place them in strategic
locations. In the example for this recipe, comments have been placed within each of the IF-ELSE blocks
to display a bit of text that will tell the developer how the values are being processed within the function.
This can be very useful when testing the code because a series of numbers can be passed into the
function in order to determine whether the correct result is being returned. If not, then you will be able
to see exactly where the code is being evaluated incorrectly.

Although using DBMS_OUTPUT statements in code can be very useful for determining where code is
functioning properly, it can cause clutter, and can also create its own issues. For example, if you forget to
place a quote after one of the DBMS_OUTPUT statements that you place into your code, then the code will
not compile correctly, causing you to hunt for the cause of yet another issue. Also, it is a good idea to
remove the output statements before code is released into production. This can take some time, which
could be better spent on development. As a means for testing small units of code, using DBMS_OUTPUT
statements works quite well. However, if you wish to develop entire test suites and automated unit
testing then you should go on to read Recipe 17-2 regarding utPLSQL.

17-2. Installing the utPLSQL Unit Testing Framework

Problem
You’ve chosen the utPLSQL unit-testing framework for PL/SQL for your work, and you want to install it.

CHAPTER 17 UNIT TESTING WITH UTPLSQL

364

Solution
First, download the utPLSQL sources from http://utplsql.sourceforge.net/. Once you have obtained
the sources, use the following steps to install the utPLSQL package into the database for which you wish
to write unit tests, and make it available for all schemas.

Create a user to host the utPLSQL tables, packages, and other objects. In this
example, the user will be named UTP, and the default permanent and
temporary tablespaces will be used.

SQL> create user utp identified by abc123;

Grant privileges to the newly created UTP user using the GRANT privilege_name TO
user_name statement, replacing values with the appropriate privilege and
username. The user will require the following privileges:

 Create session

 Create procedure

 Create table

 Create view

 Create sequence

 Create public synonym

 Drop public synonym

Install the objects by running the ut_i_do.sql script.
SQL> @ut_i_do install

Once these steps have been completed then you will have the ability to run unit tests on packages

that are loaded into different schemas within the database.

How It Works
Before you can begin to write and run unit tests within the utPLSQL framework for the PL/SQL contained
within your database, you must install the utPLSQL package into a database schema. While the utPLSQL
framework can be loaded into the SYSTEM schema, it is better to separate the framework into its own
schema by creating a separate user and installing the packages, tables, and other objects into it. The
solution to this recipe steps through the recommended approach taken to install the utPLSQL framework
into the database of your choice.

Once you have created a user schema in which to install the utPLSQL framework objects, you must
grant it the appropriate privileges. The majority of the privileges are used to create the objects that are
required to make the framework functional. Public synonyms are created for many of the framework
objects, and this allows them to be accessible to other database user accounts. After all privileges have
been granted, running the ut_i_do.sql script and passing the install parameter will complete the
installation of the framework. After completion, you can begin to build unit test packages and install
them into different schemas within the database, depending on which PL/SQL objects that you wish to
test.

http://utplsql.sourceforge.net

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

365

■ Note Unit tests will be executed from the same schema in which the PL/SQL object that is being tested resides,

not from the schema that contains the utPLSQL framework objects.

17-3. Building a utPLSQL Test Package

Problem
You would like to build a unit test package for one or more of the PL/SQL objects in your database
schema.

Solution
You want to build a utPLSQL test package to test an object in your database. A test package consists of two
separate files, a package header and a package body.

Create a header for the test package and save it in a file with the same name you
have given the header and with a .pks suffix. A header file contains three
procedures: ut_setup, ut_teardown, and the procedure that performs the unit
tests of the target object in your database. For example, suppose you want to
create a unit test package to test the code for the CALC_QUARTERLY_HOURS
function of Recipe 17-1. This package header should be stored into a file
named ut_calc_quarter_hour.pks and loaded into the database whose objects
you are testing.

CREATE OR REPLACE PACKAGE ut_calc_quarter_hour
IS
 PROCEDURE ut_setup;
 PROCEDURE ut_teardown;

 PROCEDURE ut_calc_quarter_hour;
END ut_calc_quarter_hour;

Create the package body that implements the procedures specified by the unit test
package header and save it as a file with the same name as the header, but this
time with a .pkb suffix. The following package body should be stored into a file
named ut_calc_quarter_hour.pkb and loaded into the database.

CREATE OR REPLACE PACKAGE BODY ut_calc_quarter_hour
IS

PROCEDURE ut_setup IS
BEGIN
 NULL;
END;

PROCEDURE ut_teardown IS
BEGIN
 NULL;
END;

CHAPTER 17 UNIT TESTING WITH UTPLSQL

366

PROCEDURE ut_calc_quarter_hour IS
BEGIN

 -- Perform unit tests here
 NULL;

END ut_calc_quarter_hour;

END ut_calc_quarter_hour;

The package body in this example conforms to the format that must be used for testing packages
using the utPLSQL framework.

■ Note The .pks and .pkb suffixes could be changed to something different, like .sql, if you wish. You could

also store both the package header and body in the same file. However, utPLSQL framework will look for the .pks

and .pkb suffixes in order to automatically recompile your test packages before each test. It is best to follow the

utPLSQL convention to ensure that your test packages are always valid.

How It Works
A unit test package for the utPLSQL framework consists of a package header and a body. The package
header declares a setup procedure, a teardown procedure, and a unit testing procedure. The package
body consists of the PL/SQL code that implements the unit test. When you create a ut_PLSQL package, its
name must be prefixed with ut_, followed by the procedure or function name for which you are writing
the unit test. The unit test prefix can be changed, but ut_ is the default. For more information on
changing the unit test prefix, please see Recipe 12-8.

The test package body must contain both a setup and teardown procedure. These procedures must
also be given names that use the same prefix you have chosen for your unit testing. Therefore, as you can
see in the solution to this recipe, the package header declares ut_setup and ut_teardown procedures. The
ut_setup procedure is to initialize the variables or data structures the unit test procedure uses. When a
unit test is executed, ut_setup is always the first procedure to execute. The ut_teardown procedure is
used to clean up after all of the tests have been run. You should use this procedure to destroy all of the
data structures and variables created to support your unit tests. The ut_teardown procedure is always
executed last, after all unit tests have been run.

■ Note If you are choosing to use manual registration for your tests, you will be required to register each test

procedure in the ut_setup procedure as well. By default, registration of unit test procedures occurs automatically,

so you do not need to register them within ut_setup. If you are interested in learning more about manual unit test

registration, please see the online documentation that can be found at: http://utplsql.oracledeveloper.nl/

http://utplsql.oracledeveloper.nl

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

367

The package must also contain an implementation for your unit test procedures. The unit test
procedure names should begin with the ut_ prefix followed by the name of the PL/SQL object that you
are testing. In the case of the solution for this recipe, the procedure name is ut_calc_quarter_hour. The
solution to this recipe does not contain any unit tests per se, but in order to perform a valid unit test of
the PL/SQL object, you must define a test case for each possible scenario using the assertion routines
that are made available by utAssert. To learn more about the different assertion routines, please see
Recipe 17-4.

17-4. Writing a utPLSQL Unit Test Procedure

Problem
You have a PL/SQL object that you’d like to test to verify it returns the expected values.

Solution
Create a utPLSQL test package to test every code branch and computation within your function. Use
utPLSQL assertion statements to test every foreseeable use case for the function. For example, suppose
you wish to test a simple factorial function that contains four code branches, each of which returns a
value. Here’s the target function:

CREATE OR REPLACE FUNCTION factorial (fact INTEGER) RETURN INTEGER is

BEGIN

 IF fact < 0 THEN RETURN NULL;
 ELSIF fact = 0 THEN RETURN 1;
 ELSIF fact = 1 THEN RETURN fact;
 ELSE RETURN fact * factorial (fact-1);
 END IF;

END factorial;

Next, create the unit test package to test the factorial function. Name the package using the same

name as the function to be tested and adding the prefix ut_ to it In this example, you’ll name the
package ut_factorial. Create the three required procedures within the package for setup, teardown,
and testing. Remember to save the file as a PKS file (i.e., one with a .pks file extension).

CREATE OR REPLACE PACKAGE ut_factorial IS

 PROCEDURE ut_setup;
 PROCEDURE ut_teardown;
 PROCEDURE ut_factorial;

END ut_factorial;

Now create the unit testing package body. No code is required for the ut_setup or the ut_teardown

procedures as these are usually reserved for code that updates the database prior to or after running the
tests. For example, the setup procedure may insert records that are required only by the unit test, which
means that the teardown routine must clean up any data the test leaves behind. The ut_factorial

CHAPTER 17 UNIT TESTING WITH UTPLSQL

368

procedure is built with a series of assert statements that test each code branch in the factorial
function. Remember to save the file as a PKB file (i.e., one with a .pkb file extension).

CREATE OR REPLACE PACKAGE BODY ut_factorial IS

PROCEDURE ut_setup IS
BEGIN
 NULL;
END ut_setup;

PROCEDURE ut_teardown IS
BEGIN
 NULL;
END ut_teardown;

PROCEDURE ut_factorial IS
BEGIN
 utAssert.isnull ('is NULL test', factorial(-1));
 utAssert.eqQuery ('0! Test', 'select factorial(0) from dual', 'select 1 from dual');
 utAssert.eqQuery ('1! Test', 'select factorial(1) from dual', 'select 1 from dual');
 utAssert.eqQuery ('N! Test', 'select FACTORIAL(5) from dual', 'select 120 from dual');
END ut_factorial;

END ut_factorial;

How It Works
The utPLSQL package contains a number of tests that can be used to ensure that your code is working
properly. Each of these tests is an assertion, which is a statement that evaluates to either true or false
depending on whether its conditions are met. The solution to this recipe uses four tests to determine
whether the function returns an appropriate result for each scenario. The utAssert.isnull procedure
verifies the second parameter returns a null value when executed. The utAssert.eqQuery procedure uses
the select statements in parameter positions two and three to determine if the unit test succeeds or
fails. Each select statement must return the same value when executed to succeed. The three calls to
utAssert.eqQuery procedure in the ut_factorial procedure tests one branch (if statement) within the
factorial function. The expected return value from the factorial is used in the select statement of the
third parameter to retrieve the value from dual. If the factorial is updated in such a way that any code
branch no longer returns the expected value, the unit test will fail. This test should be performed after
modifying the factorial function to test for bugs introduced by the update. Table 17-1 lists the different
assertion tests that are part of the utAssert package.

Table 17-1. utPLSQL Assertion Tests

Assertion Name Description

utAssert.eq Checks equality of scalar values

utAssert.eq_refc_query Checks equality of RefCursor and Query

utAssert.eq_refc_table Checks equality of RefCursor and Database Tables

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

369

Assertion Name Description

utAssert.eqcoll Checks equality of collections

utAssert.eqcollapi Checks equality of collections

utAssert.eqfile Checks equality of files

utAssert.eqoutput Checks equality of DBMS_OUTPUT values

utAssert.eqpipe Checks equality of database pipes

utAssert.eqquery Checks equality of different queries

utAssert.eqqueryvalue Checks equality of query against a value

utAssert.eqtabcount Checks equality of table counts

utAssert.eqtable Checks equality of different database tables

UTASSERT.isnotnull Checks for NOT NULL values

utAssert.isnull Checks for NULL values

utAssert.objexists Checks for the existence of database objects

utAssert.objnotexists Checks for the existence of database objects

utAssert.previous_failed Checks if the previous assertion failed

utAssert.previous_passed Checks if the previous assertion passed

utAssert.this Generic “this” procedure

utAssert.throws Checks if a procedure or function throws an exception

There are many other tests that can also be used to help build your unit test packages. For an entire

list of the tests that are available, please see the documentation that can be found online at:
http://utplsql.oracledeveloper.nl/.

17-5. Running a utPLSQL Test

Problem
With a unit test package defined, you want to run it to verify that a function returns the values you expect
under a variety of scenarios.

http://utplsql.oracledeveloper.nl

CHAPTER 17 UNIT TESTING WITH UTPLSQL

370

Solution
Use the utPLSQL.test procedure to run your test package. For example, suppose you want to run the unit
test you built in 17-4. To do so, enter the following commands.

set serverout on
exec utPLSQL.test('factorial', recompile_in => FALSE)

Executing the commands above produces the following output.

.

> SSSS U U CCC CCC EEEEEEE SSSS SSSS

> S S U U C C C C E S S S S

> S U U C C C C E S S

> S U U C C E S S

> SSSS U U C C EEEE SSSS SSSS

> S U U C C E S S

> S U U C C C C E S S

> S S U U C C C C E S S S S

> SSSS UUU CCC CCC EEEEEEE SSSS SSSS

.

SUCCESS: "factorial"

.

> Individual Test Case Results:

>

SUCCESS - factorial.UT_FACTORIAL: ISNULL "is NULL test" Expected "" and got ""

>

SUCCESS - factorial.UT_FACTORIAL: EQQUERY "0! Test" Result: Result set for "select
factorial(0) from dual does match that of "select 1 from dual"

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

371

>

SUCCESS - factorial.UT_FACTORIAL: EQQUERY "1! Test" Result: Result set for "select
factorial(1) from dual does match that of "select 1 from dual"

>

SUCCESS - factorial.UT_FACTORIAL: EQQUERY "N! Test" Result: Result set for "select
FACTORIAL(5) from dual does match that of "select 120 from dual"

>

>

> Errors recorded in utPLSQL Error Log:

>

> NONE FOUND

PL/SQL procedure successfully completed.

SQL> spool off

What if one of your test cases fails? Suppose that one of the test cases for the FACTORIAL test has
been modified so that a failure will result. Following is the resulting output from a failed unit test.

SQL> exec utPLSQL.test('factorial', recompile_in => FALSE)

.

> FFFFFFF AA III L U U RRRRR EEEEEEE

> F A A I L U U R R E

> F A A I L U U R R E

> F A A I L U U R R E

> FFFF A A I L U U RRRRRR EEEE

CHAPTER 17 UNIT TESTING WITH UTPLSQL

372

> F AAAAAAAA I L U U R R E

> F A A I L U U R R E

> F A A I L U U R R E

> F A A III LLLLLLL UUU R R EEEEEEE

.

FAILURE: "factorial"

.

> Individual Test Case Results:

>

SUCCESS - factorial.UT_FACTORIAL: ISNULL "is NULL test" Expected "" and got ""

>

SUCCESS - factorial.UT_FACTORIAL: EQQUERY "0! Test" Result: Result set for

"select factorial(0) from dual does match that of "select 1 from dual"

>

SUCCESS - factorial.UT_FACTORIAL: EQQUERY "1! Test" Result: Result set for

"select factorial(1) from dual does match that of "select 1 from dual"

>

FAILURE - factorial.UT_FACTORIAL: EQQUERY "N! Test" Result: Result set for

"select FACTORIAL(5) from dual does not match that of "select 121 from dual"

>

>

> Errors recorded in utPLSQL Error Log:

>

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

373

> NONE FOUND

PL/SQL procedure successfully completed.

How It Works
The utPLSQL framework makes it easy to execute all of the tests that you have setup within a unit test
package; you need only to enter a utPLSQL.test command. In the solution to this recipe, the SET
SERVEROUT ON command enables output from the DBMS_OUTPUT statements within the utPLSQL.test
procedure. Without this command you cannot view the results of the unit test. The call to the
utPLSQL.test procedure passes two parameters, the first is the name of the unit test to run. Notice that
you do not specify the name of the package built for the unit test. Instead, you pass the name of the
function being tested. The second parameter tells the utPLSQL.test procedure not to recompile any of
the code before running the test.

17-6. Building a utPLSQL Test Suite

Problem
You have created numerous unit test procedures that you must run every time you modify your code.
Running each test individually is both time-consuming and error-prone, as you may forget to run a test
or two. You need a simple method to run all of your tests at once.

Solution
Use the utsuite.add command of utPLSQL to build a test suite, use the utPackage.add command to add
individual unit tests to it, and then run the result. For example, here’s how to build a suite to run the unit
tests you developed in Recipes 17-3 and 17-4.

Create the test suite.
exec utSuite.add ('My Test Suite', 'Test all my functions');

Add individual unit tests to the suite.
exec utPackage.add ('My Test Suite', 'calc_quarter_hour');
exec utPackage.add ('My Test Suite', 'factorial');

Run the test suite. See recipe 17-7.

How It Works
The utSuite.add routine creates a new test suite using the text in the first parameter as its unique name.
Note that the utPLSQL utility uppercases the suite name before saving, so take that into consideration, as
suite names must be unique. The second parameter is descriptive text for your test suite.

Once the suite is created, use the utPackage.add procedure to add existing unit tests to the suite. The
first parameter must match the name of an existing test suite. The second parameter is the name of the
unit test to run. As more unit tests are developed, they can be added to the suite to provide an easy
method to run all tests at once.

CHAPTER 17 UNIT TESTING WITH UTPLSQL

374

17-7. Running a utPLSQL Test Suite

Problem
You have defined a test suite and now wish to run the tests.

Solution
Use the utPLSQL.testSuite routine to run your tests. For example, here’s how run the test suite defined
in Recipe 17-6.

exec utPLSQL.testSuite ('My Test Suite', recompile_in=>false);

Executing the above test suite produces the following results.

SQL> exec utPLSQL.testSuite ('My Test Suite', recompile_in=>false);

.

> SSSS U U CCC CCC EEEEEEE SSSS SSSS

> S S U U C C C C E S S S S

> S U U C C C C E S S

> S U U C C E S S

> SSSS U U C C EEEE SSSS SSSS

> S U U C C E S S

> S U U C C C C E S S

> S S U U C C C C E S S S S

> SSSS UUU CCC CCC EEEEEEE SSSS SSSS

.

SUCCESS: "FACTORIAL"

.

> Individual Test Case Results:

>

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

375

SUCCESS - FACTORIAL.UT_FACTORIAL: ISNULL "is NULL test" Expected "" and got ""

>

SUCCESS - FACTORIAL.UT_FACTORIAL: EQQUERY "0! Test" Result: Result set for "select
factorial(0) from dual does match that of "select 1 from dual"

>

SUCCESS - FACTORIAL.UT_FACTORIAL: EQQUERY "1! Test" Result: Result set for "select
factorial(1) from dual does match that of "select 1 from dual"

>

SUCCESS - FACTORIAL.UT_FACTORIAL: EQQUERY "N! Test" Result: Result set for "select
FACTORIAL(5) from dual does match that of "select 120 from dual"

>

>

> Errors recorded in utPLSQL Error Log:

>

> NONE FOUND

.

> SSSS U U CCC CCC EEEEEEE SSSS SSSS

> S S U U C C C C E S S S S

> S U U C C C C E S S

> S U U C C E S S

> SSSS U U C C EEEE SSSS SSSS

> S U U C C E S S

> S U U C C C C E S S

> S S U U C C C C E S S S S

> SSSS UUU CCC CCC EEEEEEE SSSS SSSS

CHAPTER 17 UNIT TESTING WITH UTPLSQL

376

.

SUCCESS: "CALC_QUARTER_HOUR"

.

> Individual Test Case Results:

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: ISNULL "NULL value" Expected "" and got ""

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .10 rounds down"
Result: Result set for "select calc_quarter_hour(6.10) from dual does match that of "select
6 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .15 rounds up" Result:
Result set for "select calc_quarter_hour(6.15) from dual does match that of "select 6.25
from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .35 rounds down"
Result: Result set for "select calc_quarter_hour(6.35) from dual does match that of "select
6.25 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .40 rounds up" Result:
Result set for "select calc_quarter_hour(6.40) from dual does match that of "select 6.5 from
dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .65 rounds up" Result:
Result set for "select calc_quarter_hour(6.65) from dual does match that of "select 6.75
from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .83 rounds down"
Result: Result set for "select calc_quarter_hour(6.83) from dual does match that of "select
7 from dual"

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

377

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .92 rounds up" Result:
Result set for "select calc_quarter_hour(6.92) from dual does match that of "select 7 from
dual"

>

>

> Errors recorded in utPLSQL Error Log:

>

> NONE FOUND

If you happen to have a test fail, then the output of the test suite will display a failure message for
the unit test that failed. In the following output, one of the test cases for the FACTORIAL unit test fails.

> FFFFFFF AA III L U U RRRRR EEEEEEE

> F A A I L U U R R E

> F A A I L U U R R E

> F A A I L U U R R E

> FFFF A A I L U U RRRRRR EEEE

> F AAAAAAAA I L U U R R E

> F A A I L U U R R E

> F A A I L U U R R E

> F A A III LLLLLLL UUU R R EEEEEEE

.

FAILURE: "FACTORIAL"

.

> Individual Test Case Results:

CHAPTER 17 UNIT TESTING WITH UTPLSQL

378

>

SUCCESS - FACTORIAL.UT_FACTORIAL: ISNULL "is NULL test" Expected "" and got ""

>

SUCCESS - FACTORIAL.UT_FACTORIAL: EQQUERY "0! Test" Result: Result set for

"select factorial(0) from dual does match that of "select 1 from dual"

>

SUCCESS - FACTORIAL.UT_FACTORIAL: EQQUERY "1! Test" Result: Result set for

"select factorial(1) from dual does match that of "select 1 from dual"

>

FAILURE - FACTORIAL.UT_FACTORIAL: EQQUERY "N! Test" Result: Result set for

"select FACTORIAL(5) from dual does not match that of "select 121 from dual"

>

>

> Errors recorded in utPLSQL Error Log:

>

> NONE FOUND

.

> SSSS U U CCC CCC EEEEEEE SSSS SSSS

> S S U U C C C C E S S S S

> S U U C C C C E S S

> S U U C C E S S

> SSSS U U C C EEEE SSSS SSSS

> S U U C C E S S

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

379

> S U U C C C C E S S

> S S U U C C C C E S S S S

> SSSS UUU CCC CCC EEEEEEE SSSS SSSS

.

SUCCESS: "CALC_QUARTER_HOUR"

.

> Individual Test Case Results:

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: ISNULL "NULL value" Expected

"" and got ""

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .10 rounds

down" Result: Result set for "select calc_quarter_hour(6.10) from dual does

match that of "select 6 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .15 rounds

up" Result: Result set for "select calc_quarter_hour(6.15) from dual does match

that of "select 6.25 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .35 rounds

down" Result: Result set for "select calc_quarter_hour(6.35) from dual does

match that of "select 6.25 from dual"

>

CHAPTER 17 UNIT TESTING WITH UTPLSQL

380

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .40 rounds

up" Result: Result set for "select calc_quarter_hour(6.40) from dual does match

that of "select 6.5 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .65 rounds

up" Result: Result set for "select calc_quarter_hour(6.65) from dual does match

that of "select 6.75 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .83 rounds

down" Result: Result set for "select calc_quarter_hour(6.83) from dual does

match that of "select 7 from dual"

>

SUCCESS - CALC_QUARTER_HOUR.UT_CALC_QUARTER_HOUR: EQQUERY "Check that .92 rounds

up" Result: Result set for "select calc_quarter_hour(6.92) from dual does match

that of "select 7 from dual"

>

>

> Errors recorded in utPLSQL Error Log:

>

> NONE FOUND

PL/SQL procedure successfully completed.

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

381

How It Works
The utPLSQL.testSuite procedure steps though each unit test added using the utPackage.add procedure
and executes each test. In turn, each test executes and sends its results to the screen. This is a quick
method to run all tests and see the output on one screen capture. If one of the test cases within a unit
test fails, all of the remaining tests in the suite will continue to execute, and the test that failed will be
noted in the output. This is very useful as it will allow tests of many PL/SQL objects at once, and you will
be able to see which tests had issues and which did not.

■ Hint Spool the output to a file if the number of tests exceeds the screen buffer’s capacity.

17-8. Reconfiguring utPLSQL Parameters

Problem
You would like to change some of the configurations for your utPLSQL install. For instance, you would
like to change the prefix for all of your unit test packages so that, instead of beginning with ut_, they all
start with test_.

Solution
Use the utConfig package to alter the configurations for utPLSQL. For this solution, you will see how
utConfig can be used to change the prefix that is used for all of your test packages. For example, here’s
how to change the prefix for your test packages from ut_ to test_ using the utConfig package for the
current schema.

SQL> exec utConfig.setPrefix('test_');

PL/SQL procedure successfully completed.

After executing the statement in the example, the utPLSQL unit test framework will look for test

packages beginning with the test_ prefix rather than ut_ within the current schema, until the prefix is
changed again using the utConfig package.

How It Works
The utPLSQL test framework can be configured to operate differently from its default manner by
changing options using the utConfig package. Changes can be made for the current schema only, or for
all schemas within the database. In the solution to this recipe, you have seen that the prefix for test
packages is configurable. To change the prefix, pass the desired prefix in string format to
utConfig.setPrefix(). The setPrefix() procedure also accepts an additional schema name that will
specify the schema to which the configuration option will be applied. If you do not pass a schema name,
the changes will occur within the current schema. The actual format for executing the
utConfig.setPrefix procedure is as follows:

exec utConfig.setPrefix(desired_prefix, [schema]);

CHAPTER 17 UNIT TESTING WITH UTPLSQL

382

There are many configurable options that can be changed using the utConfig package. Table 17-2
shows the complete list of options.

Table 17-2. utConfig Configuration Options

Option Description

utConfig.autocompile Configure autocompile feature

utConfig.registertest Configure the registration mode (manual or automatic)

utConfig.setdateformat Configure the date format for the date portion of output file names

utConfig.setdelimiter Configure the V2 delimiter

utConfig.setdir Configure the directory containing the test package code

utConfig.setfiledir Configure the directory for file output

utConfig.setfileextension Configure the file extension for output file names

utConfig.setfileinfo Configure all of the above file output related items

utConfig.setincludeprogname Configure whether to include the name of the program being tested
within output file names

utConfig.setprefix Configure the default unit test prefix

utConfig.setreporter Configure the default Output Reporter

utConfig.settester Configure whose configuration is used

utConfig.setuserprefix Configure the user prefix for output file names

utConfig.showfailuresonly Switch off the display for successful tests

You can set of the options shown here using a syntax similar to that shown for the setPrefix()

procedure that was demonstrated in the solution to this recipe. For more information on using the
configurations listed in Table 17-2, please see the online documentation that can be found at:
http://utplsql.oracledeveloper.nl/. Along with configurable options, the utConfig package includes
some functions that can be called to retrieve information regarding the unit test configuration for the
database or for a particular schema. Table 17-3 contains a listing of the options that utConfig makes
available for obtaining information.

http://utplsql.oracledeveloper.nl

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

383

Table 17-3. utConfig Informational Options

Option Name Description

utConfig.autocompiling Returns autocompile flag value

utConfig.dateformat Returns date format used to construct output file names

utConfig.delimiter Returns V2 delimiter

utConfig.dir Returns directory containing the test package code

utConfig.filedir Returns file output directory

utConfig.fileextension Returns output file name extension

utConfig.fileinfo Returns all file output—related items

utConfig.getreporter Obtains name of the default Output Reporter to use

utConfig.includeprogname Returns whether to include the name of the program being tested
within file names

utConfig.prefix Returns default unit test prefix for your code

utConfig.registering Returns registration mode

utConfig.showconfig Displays a schema configuration

utConfig.showingfailuresonly Returns whether successful test results are displayed

utConfig.tester Returns the schema whose configuration is used

utConfig.userprefix Returns the user prefix for output files

The functions can be called just as if they were standard functions within your schema. Some, such

as the utConfig.showconfig procedure, require you to set serveroutput on in order to display the output.
The following excerpt from a SQL*Plus session shows a call to utConfig.showconfig.

SQL> set serveroutput on
SQL> exec utconfig.showconfig
===
utPLSQL Configuration for USERNAME
Directory:
Autcompile?
Manual test registration?
Prefix =

CHAPTER 17 UNIT TESTING WITH UTPLSQL

384

Default reporter =
----- File Output settings:
Output directory:
User prefix =
Include progname?
Date format =
File extension =
----- End File Output settings
===

PL/SQL procedure successfully completed.

The utConfig package contains a variety of configurable options that will allow you to adjust unit

testing according to your specific needs. Out of the box, the utPLSQL testing framework contains default
values for each of these options, so you may never need to touch utConfig, but the option is available if
you need it. Another nice feature is that you can set configurable options for a specific schema. Doing so
will allow different schemas in the database to act differently when performing unit testing.

17-9. Redirecting utPLSQL Test Results to a File

Problem
You are interested in writing the results of a unit test to a file.

Solution
Change the setting of the setreporter option of utPLSQL so that output is redirected to a file instead of
DBMS_OUTPUT. Once the configuration has been altered, execute the unit tests for which you would like to
have the output captured to the file. After you’ve run your tests, close the file and change the
configuration back to its default. In the following lines of code, all of the steps that are necessary for
redirecting test results to a file are exhibited. For example, suppose that the database has a directory that
has already been enabled for use with the database named FILE_SYSTEM.

SQL> BEGIN
 utconfig.setfiledir('FILE_SYSTEM');
 -- Causes output to be redirected to file system
 utconfig.setreporter('File');
 utPLSQL.test('calc_quarter_hour');
 -- Closes the fle
 utfilereporter.close();
 -- Returns output redirection to DBMS_OUTPUT
 utconfig.setreporter('Output');
END;

PL/SQL procedure successfully completed.

When the code block in this example is executed, a file will be created within the directory

represented by FILE_SYSTEM. The unit test for CALC_QUARTER_HOUR will then be executed and the results
will be redirected to the newly created file. Lastly, the file will be closed and the output will be redirected
back to DBMS_OUTPUT.

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

385

How It Works
One of the configurable options of utPLSQL allows for the output of your unit tests to be redirected. The
choices for displaying unit test results include Output, File, and HTML. The standard Output option is
Output , which causes output to be displayed within the SQL*Plus environment using DBMS_OUTPUT. The
File option allows for a file to be created and unit test results to be written to that file. Lastly, the HTML
option allows for unit test results to be formatted into file in the format of an HTML table. In the solution
to this recipe, the use of the File output reporter is demonstrated.

Prior to redirecting unit test output to a file, you must create a database directory using the CREATE
DIRECTORY statement with a privileged account. For more information about creating directories, please
see the Oracle documentation that can be found at:
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118/statements_5007.htm#SQLRF01207.
Once you have created a database directory, you can use it to write the results of unit tests by setting the
file directory using the utConfig.setfiledir() procedure. This procedure accepts the name of the
database directory as a parameter. In the solution to this recipe, the directory is named FILE_SYSTEM. To
redirect the unit test output from utPLSQL, you must use the utConfig.setreporter() procedure. This
procedure accepts the name of the reporter that you would like to use for displaying output. As you can
see from the solution to this recipe, the File reporter is chosen to redirect the output to a file on the file
system. It is also possible to create a custom reporter configuration that you can pass to the
utConfig.setreporter() procedure. For more information about creating customized reporters, please
see the utPLSQL documentation that can be found at:
http://utplsql.sourceforge.net/Doc/reporter.html.

After the output has been redirected using utConfig.setreporter(), you can run as many tests as
you wish and all of the output will be directed to a file instead of to the SQL*Plus command prompt. In
the solution to this recipe, the CALC_QUARTER_HOUR function is tested. Once you have finished running
your tests, you must close the output file in order to make it available for you to use. If you fail to close
the file, you will be unable to open it or use it because the database will maintain a lock on the file. To
close the file, use issue utfilereporter.close(). Lastly, I recommend redirecting unit test output to the
default Ouput option, which will cause it to be sent to DBMS_OUTPUT. By doing so, the next person who runs
a unit test will receive the functionality that he or she expects by default, as the output will be directed to
the screen. It is a good idea to set the default output at the beginning of all test suites just to ensure that
you know where the output will be directed. However, if you are the only person running unit tests, or if
you prefer to maintain the File reporter as your default, then omit the final call to
utConfig.setreporter() that is shown in this solution.

Many times it can be useful to have unit test results redirected to an output file rather than
displayed within the SQL*Plus environment. For instance, if you are running unit tests during off hours
and would like to see the output, then it would be helpful to have it recorded to a file that can be viewed
at a later time. Similarly, if you are running several unit tests, it may be easier to read through a file rather
than scrolling through SQL*Plus output. Whatever the requirement may be, utPLSQL makes it easy to
redirect unit test output to a file or another device by creating a custom reporter.

17-10. Automating Unit Tests for PL/SQL and Java Stored Procedures

Using Ant

Problem
You wish to automatically run your unit tests for PL/SQL code and Java stored procedures each day and
to write the results of the unit test to a file.

http://download.oracle.com/docs/cd/E11882_01/server.112/e17118/statements_5007.htm#SQLRF01207
http://utplsql.sourceforge.net/Doc/reporter.html

CHAPTER 17 UNIT TESTING WITH UTPLSQL

386

Solution
Use Apache’s Ant build system to perform unit testing on your PL/SQL code. At the same time, Ant can
build and compile any Java code that you will be using for your stored procedures. To do so, develop an
Ant build script that will execute some SQL statements, automate your unit tests, and compile Java
source into a directory. For example, the following build.xml file is an example of such a build that can
be used to compile Java sources and execute unit tests on PL/SQL within a single Ant run.

<project name="MyPLSQLProject" default="unitTest" basedir=".">
 <description>
 PLSQL Unit Test and Application Builder
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src"/>
 <property name="build" location="build" value=”build”/>
 <property name="user" value="myuser"/>
 <property name="db_password" value="mypassword"/>
 <property name="database.jdbc.url" value="jdbc:oracle:thin:@hostname:1521:database"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <!-- This is where you place the code for your java stored procedures -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="unitTest" depends="compile"
 description="Execute PLSQL Unit Tests" >
 <sql
 driver = "oracle.jdbc.driver.OracleDriver"
 url = "${database.jdbc.url}"
 userid = "${user}"
 password = "${db_password}"
 print="true"
 >
 call utconfig.setfiledir('FILE_SYSTEM');
 call utconfig.setreporter('File');
 call utPLSQL.test('calc_quarter_hour');
 -- Closes the fle
 call utfilereporter.close();
 -- Returns output redirection to DBMS_OUTPUT
 call utconfig.setreporter('Output');

 </sql>

 </target>

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

387

</project>

This build script can be executed by issuing the ant command from within the terminal or

command prompt. The results will resemble the following output.

juneau$ ant

Buildfile: /Users/juneau/Documents/PLSQL_Recipes/sources/17/build.xml

init:

compile:

 [javac] /Users/juneau/Documents/PLSQL_Recipes/sources/17/build.xml:22: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for
repeatable builds

unitTest:

 [sql] Executing commands

 [sql] 0 rows affected

 [sql] 0 rows affected

 [sql] 0 rows affected

 [sql] 0 rows affected

 [sql] 0 rows affected

 [sql] 5 of 5 SQL statements executed successfully

BUILD SUCCESSFUL

Total time: 4 seconds

CHAPTER 17 UNIT TESTING WITH UTPLSQL

388

How It Works
Automating unit tests can be very helpful, especially if you are working on a project where there may be
more than one developer contributing code. The Apache Ant build system is useful for automating
builds and unit tests for Java projects. However, it can also be used to perform a myriad of other tasks,
including issuing SQL statements, as seen in the solution to this recipe. Ant provides an entire build and
unit test solution that is easy to use. To set up a build, all you need to do is install Ant on your machine
and then create a build.xml file that consists of targets that Ant will use to build the project. Once you
have created a build file, then simply open a command prompt or terminal and traverse into the
directory containing your build file. Once in the directory, issue the ant command and it will
automatically look for a file named build.xml that will provide Ant the sequence used for the build.

Ant uses simple logic to determine the order of sequence that will be used to execute the targets that
are listed within the build.xml file. In the solution to this recipe, the build file contains three targets,
init, compile, and unitTest. Ant will start the build by executing the target listed within the <project>
tag as the default. In this case, the default target is unitTest.

<project name="MyPLSQLProject" default="unitTest" basedir=".">

The unitTest target contains a depends attribute, which lists the compile target. This tells Ant that

the compile target should be executed first because unitTest depends upon its outcome.

<target name="unitTest" depends="compile"
 description="Execute PLSQL Unit Tests" >

Consequently, the compile target depends upon the init target, so init will be executed before

compile.

<target name="compile" depends="init"
 description="compile the source " >

The order of target execution for the solution to this recipe will be the init target first, followed by

the compile target, and lastly the unitTest target. The project tag also contains an attribute named
basedir. This attribute tells Ant where the build files should be located. In the solution to this recipe,
basedir contains a period “.” that tells Ant to use the current directory.

At the top of the build file, you can see that there is a <description> tag. This is used to provide a
brief description of the tasks completed by the build file. There are also several <property> tags. These
tags are used to define the variables that will be used within the build file. Each <property> tag contains a
name attribute and either a value or location attribute.

 <property name="src" location="src"/>
 <property name="build" location="build" value=”build”/>
 <property name="user" value="myuser"/>
 <property name="db_password" value="mypassword"/>
 <property name="database.jdbc.url" value="jdbc:oracle:thin:@hostname:1521:database"/>

The properties that use a value attribute are used to assign values to the property name, whereas the

properties that contain location attributes are used to assign a location to the property name. Properties
can be referenced within the build file by using the following syntax: “${property_name}”. As you can see
from the solution to this recipe, each target within the build file consists of a number of tasks in the form
of XML tags. The init target creates a timestamp by using the <tstamp/> tag, and it creates a directory

 CHAPTER 17 UNIT TESTING WITH UTPLSQL

389

using the <mkdir/> tag and passing the name of a directory to be created. In this case, the directory name
will be named the same as the value that is assigned to the <property> tag that is named build.

<target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <mkdir dir="${build}"/>
 </target>

The compile target is used to compile all of the Java sources contained in the project. All of the

sources should reside within a named directory that is located in the base directory of the Ant project.
The compile target contains a single task using the <javac> tag. This tag contains a src attribute that
defines the location of the sources to be compiled, and a destdir attribute that tells Ant where to place
the resulting Java class files. An Ant project that builds a Java project may contain only this task, but can
build several hundred Java class files. In the solution to this recipe, and for most Ant uses with PL/SQL
projects, however, the project will probably contain no Java source files or only a few at most. If a project
contains no Java source files, then the target will be executed, but the <javac> task will do nothing since
there are not any sources to be compiled.

<target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <!-- This is where you place the code for your java stored procedures -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

The most important target in the solution to this recipe is the unitTest target. It consists of a single

task using the <sql> tag. The sole purpose of the <sql> task is to execute SQL within a designated
database. The <sql> tag contains a driver attribute that is used to list the JDBC driver for the target
database, a url attribute used to define the JDBC URL for the target database, a userid and password
attribute for defining the database username and password, and a print attribute that tells Ant whether
to print the result sets from the SQL statements. In the solution to this recipe, the SQL that is required to
execute the unit tests is contained within the <sql> opening and closing tags. This causes the unit tests to
be executed as if you were issuing these statements at the SQL*Plus command prompt.

<target name="unitTest" depends="compile"
 description="Execute PLSQL Unit Tests" >
 <sql
 driver = "oracle.jdbc.driver.OracleDriver"
 url = "${database.jdbc.url}"
 userid = "${user}"
 password = "${db_password}"
 print="true"
 >
 call utconfig.setfiledir('FILE_SYSTEM');
 call utconfig.setreporter('File');
 call utPLSQL.test('calc_quarter_hour');
 -- Closes the fle
 call utfilereporter.close();
 -- Returns output redirection to DBMS_OUTPUT
 call utconfig.setreporter('Output');

CHAPTER 17 UNIT TESTING WITH UTPLSQL

390

 </sql>

 </target>

To automate your Ant build, you will need to set up an operating system task that starts the Ant
build. The task is very simple and needs to contain only very few lines. The following lines of code
contain batch script for the Windows operating system that can be used to invoke the Ant build. This
assumes that the java.exe executable is contained within the PATH environment variable.

cd C:/path_to_project_directory
ant

You will also need to ensure that the JDBC driver for the Oracle database is contained within your
CLASSPATH. If you do not include the JDBC driver in the CLASSPATH, then you will receive an error when
you try to execute the build. When the Ant build is executed, a file will be placed onto the database server
in the location designated by the FILE_SYSTEM database directory. The file will contain the results of the
unit test execution.
Ant is a complex build system that can be used for configuration and preparation of your builds and unit
tests. It is a widely used build system, especially for organizations that do lots of Java development. As
you can see, it is easy to use, but does contain complexity in that there are a number of different tasks
and attributes that can be used. This recipe does not even scratch the surface of everything that Ant can
do. However, there are lots of sources for documentation on Ant that can be found online as well as in
book format. To learn more about Ant, you can start by reading the online documentation that can be
found at: http://ant.apache.org/manual/.

http://ant.apache.org/manual

391

Index

 Special Characters

$ORACLE_HOME/rdbms/admin
directory, 103

%FOUND attribute, 50, 158
%ISOPEN attribute, 158
%NOTFOUND attribute, 18, 158
%ROWCOUNT attribute, 158
%ROWTYPE attribute, 21–23, 25, 35,

171
%TYPE attribute, 14, 20–22

 A

ACCESS_INTO_NULL exception, 190
ACTION parameter, 26, 244
ADD_DAYS function, 134
ADD_JOB_EMAIL_NOTIFICATION

procedure, 235
ADD_MONTHS function, 135–138
AFTER EACH ROW clause, 114
AFTER EACH ROW section, 113
AFTER EACH ROW trigger, 115
AFTER event type, 111
AFTER INSERT trigger, 94
AFTER LOGON ON DATABASE clause,

107
AFTER LOGON trigger, 249
AFTER STATEMENT section, 113
AFTER STATEMENT trigger, 114–115
AFTER trigger, 106–107, 111
AFTER UPDATE trigger, 95–98, 114
AJAX, creating input forms with,

315–318
AjaxMgr.js procedure, 315, 317
ajax.xml procedure, 318
ALL category, 213
ALTER. . .COMPILE command, 289
ALTER JAVA CLASS <name> RESOLVE

command, 322–323

ALTER JAVA SOURCE command, 339
ALTER SESSION statement, 211–212
ALTER TABLE statement, 175
AND keyword, 192
AND operator, 98
ANSI-compliant, type conversion,

129–131
Ant, automating unit tests for PL/SQL

and Java stored procedures, 385–390
apps, viewing errors for debugging,

310–311
assert statement, 368
AUDITED_CURSORID parameter, 26
AUTHENTICATED_DATA parameter,

26
AUTHENTICATION_TYPE parameter,

26
AUTHID property, 88–89
automating routine tasks, 233–245

e-mailing output from scheduled
jobs, 234–235

refreshing materialized view on
timed intervals, 236–238

scheduling
job chains, 240–245
recurring jobs, 233–234

synchronizing data with remote
data sources, 238–240

using e-mail for job status
notification, 235

 B

bad_msg label, 60
BEFORE clause, 106
BEFORE event, 109, 111
BEFORE INSERT trigger, 92, 94,

103–105, 111
BEFORE trigger, 105–107
BEFORE UPDATE trigger, 96
BEGIN keyword, 1, 71, 94

 INDEX

392

BEGIN.END block, 19
BFILE type, 49
BG_JOB_ID parameter, 27
BILLING_DATE function, 135
BINARY_DOUBLE datatype, 120
BLOB type, 49
blocks of code

commenting, 8–9
creating, 1–2
executing in SQL *Plus, 2–3
referencing, 9–10
referring to variables from nested,

10
blocks of PL/SQL, executing, 171
BODY clause, 289
<BODY> tag, 294
bottlenecks, identifying, 283–284

 tag, 297
build.xml file, 388
BULK COLLECT statement, 227, 240,

285–286
BYHOUR section, 234
BYMINUTE section, 234

 C

calc_commission procedure, 233–234
CALC_EMPLOYEE_PAYCHECK

procedure, 82
CALC_QUARTER_HOUR function, 91,

348, 359, 363, 385
calcQuarterHour method, 349
CALC_QUARTER_HOUR procedure,

356
CALC_QUARTERLY_HOURS function,

365
CALCULATE_BILL function, 123
CALCULATE_DATE_YEARS function,

138
call keyword, 350
call() method, 359
CallableStatement

registerOutParameter() method,
350

callProc() function, 358
CASE statements, 46–49, 189–190, 198
CASE_NOT_FOUND exception, 190
CAST function, 120, 122, 124, 127,

129–131
catch block, 350

cattributes parameter, 305, 315
cclauses parameter, 303
ccolumns parameter, 303
cdates(i) collection, 226
CHAIN_NAME parameter, 244
CHAR datatype, 120, 149, 152
classes, Java

creating database, 319–321
embedding into PL/SQL packages,

336–338
exposing as stored procedures, 325
loading into databases, 321–323
removing, 340–341

CLIENT_IDENTIFIER parameter, 27
CLIENT_INFO parameter, 27
CLOB datatype, 149, 152, 179
CLOB variable, 179, 234–235
CLOSE statement, 38
code, 1–14

blocks of
commenting, 8–9
creating, 1–2
executing in SQL *Plus, 2–3
referencing, 9–10
referring to variables from nested, 10

compiling within navigator,
278–279

computationally intensive,
optimizing, 288–289

debugging stored, 276–278
displaying results, in SQL*Plus, 6–8
scripts

executing, 4–5
storing code in, 3–4

stored PL/SQL, testing without unit
tests, 361–363

and user input, accepting from
keyboard, 5–7

variables
changing substitution variable

character, 12–14
creating to match database column

type, 14
disabling variable substitution, 12–13
escaping variable references, 12

writing and executing, 253–256
Code tab, 270
COLLECTION_IS_NULL exception, 190

 INDEX

393

collections
passing as OUT parameters,

287–288
PL/SQL, 215–232

checking whether elements exist,
228–229

counting members in collections,
226–227

creating and accessing complex
collections, 220–223

creating and accessing hash array
collections, 219–220

creating and accessing indexed
tables, 216–217

creating and accessing record
collections, 218–219

creating simple records, 217
deleting records from collections,

227–228
increasing size of collections,

229–230
navigating collections, 230–231
passing collections as parameters,

223–224
returning collection as parameters,

224–225
trimming collections, 232
varray, 215–216

column names, qualifying, 18–20
column types

creating variable to match, 14
variable types that match with,

20–21
column values, finding tables that

include, 175–179
Columns tab

Oracle SQL Developer, 250
Table Editor, 250

commenting blocks of code, 8–9
COMMENTS parameter, 244
commit() method, 350
COMMIT statement, 34–38, 40
common package, 225, 302, 305
common.header routine, 301, 307
Compile for Debug option, 277
Compile option, 279
COMPILE statement, 289
Compiler - Log window, 263
complex collections, creating and

accessing, 220–223

computationally intensive code,
optimizing, 288–289

concatenating strings, 133–134
concatenation operator, 30, 134
CONDITION parameter, 244
conditional statements

CASE statements, 46–49
and GOTO statement, 60–61
IF-ELSE statements, 44–45
IF-ELSIF-ELSE statements, 45–46
IF-THEN statements, 43–44

connect sys command, 281
Connections pane, Oracle SQL

Developer, 262
CONTINUE statement, for loops, 53–54
CONTINUE WHEN format, 54
controls, redirecting after exceptions,

202–204
COUNT method, 216, 226–228, 232
count_down.sql file, 3
Create a New dialog box, 265, 268, 272
Create a New window, Oracle SQL

Developer, 247, 256, 262, 266
CREATE ANY PROCEDURE system

privilege, 71
Create Body option, 270
CREATE DIRECTORY statement, 385
Create Function Wizard, Oracle SQL

Developer, 261–262
CREATE JAVA command, 321, 323, 329
CREATE MATERIALIZED VIEW

statement, 236, 238
CREATE OR REPLACE keywords, 74
CREATE OR REPLACE TRIGGER

statement, 94
Create PL/SQL Function window,

Oracle SQL Developer, 262
Create PL/SQL Package Wizard, 269
Create PL/SQL Procedure window, 266
Create PL/SQL Procedure Wizard, 265
CREATE PROCEDURE privilege, 71, 81,

325
Create Procedure Wizard, 265
CREATE PUBLIC SYNONYM privilege,

83
CREATE statement, 3
CREATE TABLE permission, 324
Create Trigger window, 272–274
Create Trigger Wizard, 272, 274–275
CREATE_ATTR_TABLE procedure, 173
CREATE_CHAIN option, 241

 INDEX

394

CREATE_CONTEXT statement, 26
CREATE_JOB procedure, 234–235, 240
CREATE_PROGRAM option, 241
ctable parameter, 302
current user, executing packages under

privileges of, 88–89
current_manager_id value, 11
CURRENT_SCHEMA parameter, 29
CURRENT_SCHEMAID parameter, 27
CURRENT_SQL parameter, 27
CURRENT_USER keyword, 89
CURRENT_USER privileges, 88–89
CURSOR_ALREADY_OPEN exception,

190
cursor%ROWTYPE type, 23
cursors

deleting rows returned by, 34–35
retrieving single row using, 16–18
updating rows returned by, 33–34

cur_var variable, 180

 D

DAD (Data Access Descriptor), 291, 354
dads.conf file, 291–292, 310
DASH value, 126
data

displaying from tables, 302–303
passing between web pages,

308–310
passing objects from PL/SQL to

Java, 334–336
returning from dynamic queries

into records, 170–171
synchronizing with remote data

sources, 238–240
Data Access Descriptor (DAD), 291, 354
Data tab, Oracle SQL Developer, 250,

278
databases

creating web form dropdown lists
from queries, 303–305

Java in, 319–344
calling Java stored procedures from

PL/SQL, 326–328
creating and calling Java database

functions, 330–332
creating Java database class, 319–321
creating Java database triggers,

332–334

embedding Java class into PL/SQL
packages, 336–338

executing Java stored procedures,
325–326

exposing Java class as stored
procedures, 325

loading Java database class into
databases, 321–323

loading Java libraries into databases,
338–340

passing data objects from PL/SQL to
Java, 334–336

passing parameters between
PL/SQL and Java, 328–330

querying databases to help resolve
Java compilation issues, 343–344

removing Java classes, 340–341
retrieving database metadata with

Java, 341–342
standard and privileged

connections, 247–249
DATE datatype, 121–122, 135, 141, 145,

147–148
DATE format, 121
DATE unit, 147
DATE value, 124–125, 134
dates

adding to
days, 134
hours, 140–141
minutes, 140–141
months, 135–136
seconds, 140–141
years, 137–138

associating time zone with, 147–148
converting to strings, 124–126
difference between two, 138–140
returning first day of given month,

142–143
returning last day of given month,

143–144
rounding datetime value, 145–146
tracking time to millisecond,

146–147
DAY expression, 141
days, adding to date value, 134

 INDEX

395

DB_DOMAIN parameter, 29
Dbms Output pane, 252–253
DBMS_DEBUG_JDWP utility, 278
DBMS_DEBUG_JDWP.CONNECT_TCP

(hostname, port) command, 278
DBMS_JAVA package, 324
DBMS_JAVA.LONGNAME('short_class

name') function, 323
DBMS_JAVA.SHORTNAME('long_class

name') function, 324
DBMS_METADATA package, 91–92
DBMS_METADATA.GET_DDL

procedure, 91
DBMS_OUTPUT package, 7–8, 30, 147,

181, 189, 252
DBMS_OUTPUT statements, 361, 363,

373
DBMS_OUTPUT.ENABLE procedure,

30
DBMS_OUTPUT.PUT_LINE procedure,

8, 18, 216, 234–235
DBMS_PROFILE package, 281
DBMS_PROFILER, installing, 281–282

creating profiler tables and
sequence objects, 282

installing packages, 281–282
DBMS_PROFILER.FLUSH_DATA

procedure, 284, 287
DBMS_PROFILER.START_PROFILER

routine, 284, 286
DBMS_PROFILER.STOP_PROFILER

routine, 284, 286
DBMS_REFRESH routine, 238
DBMS_REFRESH.ADD procedure, 238
DBMS_REFRESH.MAKE procedure, 238
DBMS_REFRESH.REFRESH procedure,

238
DBMS_SCHEDULE.CREATE_JOB

procedure, 245
DBMS_SCHEDULER package, 240
DBMS_SCHEDULER_CHAIN

command, 240
DBMS_SCHEDULER.CREATE_CHAIN

procedure, 244
DBMS_SCHEDULER.CREATE_JOB

procedure, 233
DBMS_SCHEDULER.CREATE_PROGR

AM procedure, 244
DBMS_SCHEDULER.DEFINE_CHAIN_

RULE procedure, 244–245

DBMS_SCHEDULER.DEFINE_CHAIN_
STEP procedure, 244

DBMS_SCHEDULER.ENABLE
procedure, 234, 245

DBMS_SCHEDULE.RUN_CHAIN
procedure, 245

DBMS_SESSION.SET_CONTEXT
procedure, 26

DBMS_SHARED_POOL package, 290
DBMS_SHARED_POOL.KEEP

procedure, 290
DBMS_SQL package, 156, 158–159, 168,

170, 179, 182
DBMS_SQL, switching with native

dynamic SQL, 182–184
DBMS_SQL.EXECUTE function, 180
DBMS_SQL.PARSE procedure, 180
DBMS_SQL.TO_CURSOR_NUMBER

API, 182–183
DBMS_SQL.TO_REFCURSOR API,

182–184
DBMS_UTILITY.FORMAT_CALL_STAC

K function, 208, 210
DBMS_UTILITY.FORMAT_CALL_TRAC

E function, 207
DBMS_UTILITY.FORMAT_ERROR_BA

CKTRACE function, 207, 210
DBMS_UTILITY.FORMAT_ERROR_STA

CK function, 197–199, 207
DBMS_WARNINGS package, 211–213
DBMS_XMLGEN package, 314–315
DB_NAME parameter, 29
DB_UNIQUE_NAME parameter, 27
DD format model, 145
DD-MON-YY format, 122
DDL statement, 175
DDL tab, 266
DEBUG ANY PROCEDURE privilege,

276
DEBUG CONNECT SESSION privilege,

276
Debug option, 276
Debug PL/SQL window, 277–278
Debugger option, Navigator, 276
debugging

stored code, 276–278
web apps, viewing errors for,

310–311
DECLARE keyword, 65
DECLARE section, 1–3, 6, 94

 INDEX

396

DECLARE.BEGIN/.END pattern, 2
decode function, 307
DEFAULT keyword, 76
default parameter values, setting for

procedures, 75–76
DEFAULT value, 138
DEFINE character, 14
DEFINE_CHAIN_RULE option, 241
DEFINE_CHAIN_STEP option, 241
DEFINER privileges, 88
DELETE block, 205
DELETE method, 106, 227–229, 232
DELETE statements, 34–35, 41, 100,

168–170, 204
DELETE trigger, 107
DELETING conditional predicate, 98
deleting rows returned by cursor, 34–35
department_id variable, 6, 50
DEPARTMENT_NAME column, 14, 99
DEPARTMENTS table, 11, 97, 177
depends attribute, 388
dept variable, 220
dept_block block, 9–10
dept_id variable, 6, 14
dept_name variable, 10, 14
descr_emp procedure, 303–304
describe feature, 302
<description> tag, 388
description variable, 19
destdir attribute, 389
determining error inside OTHERS

handler, determining error inside,
197–200

DETERMINISTIC clause, 69
DETERMINISTIC keyword, for

functions, 68–69
DISABLE clause, 116
DISABLED clause, 117
DISABLED state, for triggers, 115–117
display_department_info.sql script, 13
displaying results, in SQL*Plus, 6–8
Django web framework, 357–358
django.db package, 358
DML statement, 158, 168
DML trigger, 102, 106
DOM (Document Object Model), 318
dow variable, 216
driver attribute, 389
driver procedure, 84–85
DriverManager class, 347

DriverManager.getConnection()
method, 349

DriverManager.registerDriver()
method, 349

DROP JAVA command, 341
DROP JAVA SOURCE command, 341
dropdown lists, web form, 303–305
dropjava utility, 341
DUAL table, 28–29
DUMMY column, 28
duplicate rows, removing, 40–41
DUP_VAL_ON_INDEX exception, 190
dynamic blocks of PL/SQL, executing,

171
dynamic DELETE statements, writing,

168–170
dynamic INSERT statements, writing,

161
dynamic SQL, 155–186

executing
dynamic blocks of PL/SQL, 171
multiple row queries, 159–161
single row queries, 155–158

passing NULL values to, 181
returning data from dynamic

queries into records, 170–171
SQL injection attacks, 184–186
storing in large objects, 179–180
switching between DBMS_SQL and

native dynamic SQL, 182–184
tables

altering at runtime, 174–175
creating at runtime, 173–174
that include specific column values,

175–179
writing

dynamic DELETE statements,
168–170

dynamic INSERT statements, 161
dynamic update statements,

164–168
dynamic update statements, writing,

164–168

 E

e-mail
sending output from scheduled

jobs, 234–235
using for job status notification, 235

 INDEX

397

Edit option, 275
Edit Snippet icon, 261
Edit Snippets window, 261
elements, checking existence of,

228–229
ELSE clause, 45, 48–49, 61, 190
EMAIL column, 41, 353
EMAIL value, 105–106
emp list, 317
EMP schema, 87, 90
EMP table, 268
EMP_AUDIT procedure, 333
emp_id field, 313, 336
empID package, 315
EMP_ID parameter, 75
emp_id parameter, 301
emp_id variable, 259
empID.js file, 312
<<emp_info>> block, 19
emp_info_rec variable, 23
EMP_JOB_VIEW view, 99
Employee class, 328, 337
EmployeeFacade class, 346–347
EMPLOYEE_ID field, 69, 354
EMPLOYEE_ID parameter, 71
<EMPLOYEE_ID> tag, 315
EMPLOYEE_ID value, 41, 124
Employees class, 319, 328, 331, 336,

338, 341
EMPLOYEES table, 41, 96, 111, 272, 307,

317, 328, 332–333, 335
Employees.class file, 324
EMPLOYEES.EMAIL table, 104
Employees.java file, 319, 322, 328
EMP_PKG package, 337
emp_rec type, 22
EMP_RPT.RPT procedure, 301, 354–355
emps_type structure, 224–225
ENABLE parameter, 244
ENABLED parameter, 233
ENABLED state, 117
END CASE keywords, 49
END keyword, 1–2, 71, 94
END LOOP clause, 59
END LOOP keywords, 50, 52–53, 55
end_msg label, 60
ENTRYID parameter, 27
error numbers, associating with

exceptions, 206–207
errors, viewing for debugging web apps,

310–311

escaping variable references, 12
EXCEPTION block, 66, 164
EXCEPTION keyword, 187, 189
exceptions, 187–213

associating error numbers with,
206–207

catching unknown, 192–194
creating programmer-defined,

194–196
determining error inside OTHERS

handler, 197–200
displaying PL/SQL compiler

warnings, 211–213
raising

and continuing processing, 204–205
programmer-defined, 194–196
user-defined without handler,

200–202
redirecting control after, 202–204
tracing origin of, 207–210
trapping, 187–192

EXEC command, 82, 326
EXEC DBMS_REFRESH.MAKE

procedure, 237
EXEC

DBMS_SCHEDULER.CREATE_JOB
procedure, 233, 238

EXEC keyword, 72–73
EXECUTE access, 83, 88
EXECUTE function, 184
EXECUTE IMMEDIATE statement, 156,

158, 164, 168, 173–175, 181
EXECUTE keyword, 72
execute() method, 350
EXECUTE privilege, 81–83, 88, 290, 292
executeQuery() method, 321
executeUpdate() method, 347
executing scripts, 4–5
EXISTS method, 220, 228
EXIT clause, 50, 59
EXIT condition, 53
EXIT keyword, 10, 50, 52, 59
EXIT statement, for loops, 59–60
EXIT-WHEN statement, 50
explicit cursor FOR loop, 25
EXTEND method, 226, 229–230
Extensible Hypertext Markup Language

(XHTML), 354
EXTERNAL_NAME parameter, 27
EXTRACT function, 147

 INDEX

398

 F

Facelets framework, 355
factorial function, 289, 368
failure flags, for packages, 85–87
FETCH statement, 18, 22, 38
FG_JOB_ID parameter, 27
File option, 385
files, redirecting upPLSQL test results

to, 384–385
FILE_SYSTEM directory, 384–385, 390
finding patterns within strings, 148–149
FIRST method, 220, 230–231
FIRST_NAME column, 41, 95
first_name field, 307
FOLLOWS clause, 111–112
footer routine, 294
FOR clause, 161
FOR EACH ROW clause, 94, 96
FOR keyword, 52, 55
FOR loop, 51–52

to iterate a fixed number of times,
55

with REVERSE keyword, 56–57
FOR statement, 284
FOR UPDATE clause, 33–35, 37
FOR variable_name IN clause, 25
FORALL command, 286
FORALL loop, 285
FOR.IN loop, 52
FOR.LOOP, 297
<FORM> tag, 297–298, 305, 313
FORMAT_ERROR_BACKTRACE

function, 207
formatting results, 29–30
forms, input, 315–318
framework, utPLSQL unit testing,

363–364
Function Editor window, 263
FUNCTION type, 92
functions

accepting multiple parameter sets
in, 89–90

creating, 261–265
within procedures, 73–74
public name for, 82–83
stored, 63–67

DETERMINISTIC keyword for,
68–69

executing from query, 67

Java database, creating and calling,
330–332

listing of, 88–90
viewing source code for, 91–92

 G

Gears button, 267
gender variable, 297
gen_xml procedure, 318
getAttributes method, 338
getConnection() method, 321, 347
GET_DDL function, 92
get_emp_data function, 225
GET_EMP_DEPARTMENT function,

335, 337
getEmpDepartment method, 335
getEmpJobTitle function, 331
getFloat() method, 350
getItEmps() method, 319, 326
get_it_emps procedure, 326
getItEmps() procedure, 328
getMetaData method, 342
getxml procedure, 315
GLOBAL_CONTEXT_MEMORY

parameter, 27
GOTO keyword, 10
GOTO statement, jumping to

designated location in code with,
60–61

grant execute command, 282
GRANT privilege_name TO user_name

statement, 364
granting creation and execution of

procedures, 80–81
GRANT_RAISES procedure, 73, 81
Groovy, accessing PL/SQL from,

358–359
GROUP BY clause, 254

 H

hash array collections, creating and
accessing, 219–220

<HEAD> tag, 294
header procedure, 297
header routine, 294
HIRE_DATE column, 16, 93, 95, 111,

124

 INDEX

399

History window, 255
History window, SQL, 255
HOST parameter, 27
HOUR expression, 141
HOUR unit, 147
hours, adding to date value, 140–141
HR.calc_commission schema, 233
HR.my_package.calc_commission

schema, 233
HTML option, 385
html package, 317
HTML page generation procedures,

creating common sets of, 293–295
html procedure, 297, 301, 307, 313,

317
<HTML> tag, 294
htp package, 315
htp.formCheckbox procedure, 298
htp.formClose procedure, 299
htp.formHidden procedure, 299, 309
htp.formImage procedure, 298
htp.formOpen procedure, 298
htp.formPassword procedure, 298
htp.formRadio procedure, 297, 299
htp.formReset procedure, 298
htp.formSelectClose procedure, 299,

304–305, 307
htp.formSelectOpen procedure, 298,

304–305, 307, 317
htp.formSelectOption procedure, 298,

304–305, 307
htp.formSubmit procedure, 298
htp.formText procedure, 299
htp.formText routine, 313
htp.formTextarea procedure, 299
htp.formTextareaClose procedure, 299
htp.formTextareaOpen procedure, 299
htp.p procedure, 315
htp.p statement, 315
HTTP, accessing PL/SQL procedures

with, 350–355
httpd.conf file, 310

 I

IF-ELSE blocks, 363
IF-ELSE statement, 44–45, 48
IF-ELSIF-ELSE statement, 45–48
IF-THEN statement, 43–45
implicit cursor FOR loop, 25

imports statements, 359
IN collection clause, 52
IN keyword, 55
IN mode, 266
IN OUT parameter, 65
IN parameter, 65
increaseWage() method, 345–347
INCREASE_WAGE procedure, 69, 71,

73, 277, 346, 356
INDEX BY clause, 217–218, 228, 230,

232
INDEX BY collection, 226
INDEX BY option, 219
INDEX BY table, 238
index method, 218
indexed tables, creating and accessing,

216–217
INFORMATIONAL category, 213
initial execution running time, 290
initialization code, for packages, 79–80
input data

scrubbing with triggers, 104–105
validating with triggers, 103–104

input forms, creating, 295–299,
315–318

<INPUT> tag, 311
<INPUT TYPE="CHECKBOX">, 298
<INPUT TYPE="HIDDEN">, 298
<INPUT TYPE="TEXT">, 299
input_form package, 297
input_form.html procedure, 298
INSERT event, 106, 332, 334
INSERT statements, 35, 95, 100, 103,

161, 168, 204, 333–334
INSERT trigger, 94, 96, 107
installing DBMS_PROFILER,

281–282
creating profiler tables and

sequence objects, 282
installing packages, 281–282

INSTANCE parameter, 27
INSTEAD OF clause, 99–100
INSTEAD OF trigger, 98, 100–101
INSTR function, 104, 151
INTO clause, 18, 158
INVALID_CURSOR exception, 190
INVALID_NUMBER exception, 190
IP_ADDRESS parameter, 27
ISDBA parameter, 27

 INDEX

400

 J

Java, 319–344
classes

creating, 319–321
embedding into PL/SQL packages,

336–338
exposing as stored procedures, 325
loading into databases, 321–323
removing, 340–341

database functions, creating and
calling, 330–332

database triggers, creating, 332–334
libraries, loading into databases,

338–340
passing data objects from PL/SQL

to, 334–336
passing parameters between

PL/SQL and, 328–330
querying databases to help resolve

compilation issues, 343–344
retrieving database metadata with,

341–342
stored procedures, 385–390

calling from PL/SQL, 326–328
executing, 325–326

Java Database Connectivity. See JDBC
Java virtual machine (JVM), 321, 345
<javac> tag, 389
java.exe executable, 390
JavaMail API, 338
JavaScript, generating via PL/SQL,

311–313
java.sql.Connection prepareCall()

method, 349
java.sql.Types.FLOAT datatype, 350
JavaUtils class, 339, 342–343
JDBC (Java Database Connectivity)

accessing PL/SQL stored functions
from, 348–350

accessing PL/SQL stored
procedures via, 345–348

job_all_events parameter, 235
JOB_BROKEN event, 235
JOB_CHAIN_STALLED event, 235
job_completed parameter, 235
job_disabled parameter, 235
JOB_FAILED event, 235
JOB_HISTORY table, 35, 38, 129
JOB_ID column, 96

job_list procedure, 304
JOB_OVER_MAX_DUR event, 235
job_run_completed parameter, 235
jobs

recurring, scheduling, 233–234
scheduled, e-mailing output from,

234–235
status notification, using e-mail for,

235
JOBS table, 95–96, 101, 127, 171, 183
JOB_SCH_LIM_REACHED event, 235
job_started parameter, 235
job_stopped parameter, 235
job_succeeded parameter, 235
js procedure, 313
JVM (Java virtual machine), 321, 345
Jython, accessing PL/SQL from,

355–358
Django web framework, 357–358
zxJDBC API, 357

 K

keyboard, accepting user input from,
5–7

 L

LANG parameter, 27
LANGUAGE parameter, 27
LAST method, 230–231
LAST_DAY function, 144
LAST_NAME column, 19, 41, 95
last_name column, emp_rec record

type, 22
LAST_NAME variable, 18
LENGTH function, 170
libraries, Java, 338–340
listing

of functions, 88–90
of packages, 88–90
of procedures, 88–90

loadEmployees procedure, 317
loadjava utility, 322–324, 338, 340–341
location attribute, 388
<Location> tag, 292
LOCATIONS table, 111
LOCK statement, 38
log_error_messages procedure, 204
LOGIN_DEINIED exception, 190

 INDEX

401

LOG_JOB_HISTORY procedure, 39
LOGOFF event, 109
LOGON event, 109
log_substitution procedure, 39
LONG value, 126
LOOP construct, 161, 171
LOOP keyword, 50, 61
LOOP statement, 49–51
loops

CONTINUE statement for, 53–54
EXIT statement for, 59–60
iterating increments other than one

with, 57
FOR loop, 51–52

to iterate a fixed number of times, 55
with REVERSE keyword, 56–57

LOOP statement for, 49–51
and MOD function, for

odd-numbered increments, 58
read/write, speeding up, 285–287
through rows from query, 24–25
WHILE loop, 52

LPAD function, 29–30
LTRIM(<string>) function, 30

 M

main() method, 346
MAKE procedure, 238
MANAGER_ID column, 97
match_parameter parameter, 151
materialized view, refreshing on timed

intervals, 236–238
MATH_API package, 90
members, counting in collections,

226–227
Messages log, 275
Messages pane, 275, 279
Messages window, 279
<META> tag, 294
metadata, database, 341–342
mgr list, 317
mgr_id variable, 11
MGR_RECS structure, 222
milliseconds, tracking time to, 146–147
MIN_SALARY column, 96
MINUTE expression, 141
MINUTE unit, 147
minutes, adding to date value, 140–141
<mkdir/> tag, 389

MM format model, 143
MOD function, for odd-numbered

increments, 58
model.py file, 357
MODULE parameter, 28
MONTH unit, 147
months, adding to date value, 135–136
mulit package, 310
multiple records, variables for, 22–24
multiple row queries, executing,

159–161
my_large_procedure procedure, 290
my_stored_script.sql script, 4

 N

name attribute, 388
native dynamic SQL (NDS), 161,

182–184
NATIVE mode, 289
NATIVE option, 289
NATIVE setting, 288
navigating collections, 230–231
navigator, compiling code within,

278–279
NCHAR datatype, 120, 149, 152
NCLOB datatype, 149, 152
NDS (native dynamic SQL), 161, 182,

184
NETWORK_PROTOCOL parameter, 28
New Function option, 262
New Package option, 269
New Package Wizard, 269
New Procedure option, 265
:NEW qualifier, 94, 96, 104, 106–107
New/Select Database Connection

window, Oracle SQL Developer, 247
New toolbar button, Oracle SQL

Developer, 262
:NEW value, 101, 105–106
newcontext procedure, 315
NEW_EMPLOYEE procedure, 162
new_manager_id value, 11
NEW_REVIEW variable, 152
NEXT method, 220, 231
nightly_commissions job, 234
nls settings, 120
NLS_CALENDAR parameter, 28
NLS_CURRENCY parameter, 28, 120
NLS_DATE_FORMAT parameter, 28

 INDEX

402

NLS_DATE_LANGUAGE parameter, 28
NLS_LANGUAGE parameter, 120
NLS_SORT parameter, 28
NLS_TERRITORY parameter, 28
NOCOPY option, 287–288
NO_DATA_FOUND error, 137
NO_DATA_FOUND exception, 17, 19,

189–190
NOT NULL constraint, 105
NOT_LOGGED_ON exception, 190
NOWAIT keyword, 34–35, 37
NULL values, passing, 181
null_array collection, 297
NUMBER datatype, 119, 131–132
NUMBER field, 119
NUMBER format, 120
NUMBER type, 7, 65, 71
NUMBER value, 125, 131
numbers

converting to
PLS_INTEGER, 131–132
strings, 123–124

rounding, 144–145
NUMTODSINTERVAL function,

141–142
NVARCHAR2 datatype, 120, 149, 152

 O

objects
sequence, creating, 282
storing dynamic SQL in, 179–180

occurrence parameter, 151
:OLD qualifier, 96, 105–107
:OLD value, 101
ON DATABASE clause, 109
OPEN statement, 38, 159, 161
<OPTION> tag, 298
options parameter, 297
OR keyword, 106
OR REPLACE clause, 65, 71, 329
ORA-06553 error, 137
Oracle Application Express

environment, 3
Oracle Scheduler utility, 69
/Oracle/scripts/ directory, 4
Oracle SQL Developer environment,

247–279
accepting user input for

substitution variables, 258

compiling code within navigator,
278–279

creating
and executing scripts, 256–258
functions, 261–265
package header and body, 268–272
standard and privileged database

connections, 247–249
stored procedures, 265–268
triggers, 272–275

debugging stored code, 276–278
enabling output to be displayed,

251–253
obtaining information about tables,

249–251
saving pieces of code for quick

access, 259–261
writing and executing PL/SQL code,

253–256
ORACLE_HOME variable, 324
[oracle_home]ApacheApachelogs

directory, 310
[oracle_home]Apachemodplsqlconf

directory, 310
ORDER BY clause, 57, 254
order by option, 307
ORDER BY section, 305
order by statement, 303
OS_USER parameter, 28
OTHERS exception, 192, 205
OTHERS handler, 192, 194, 196–197,

202, 207
OUT parameters, passing large or

complex collections as, 287–288
outer_block, 10
outer_block.dept_name variable, 10
owa_util package, 313, 317
owa_util.get_cgi_env routine, 294
owa_util.tablePrint procedure, 302–303

 P

P flag, 290
<P> tag, 297
Package editor window, 270
package header and body, creating,

268–272
Package option, 268
Package subfolder, 270
PACKAGE type, 92

 INDEX

403

package_name.object_name notation,
81

package_name.subprogram_name
notation, 83

packages
creating, 76–79
creating public name for, 82–83
executing package programs

overview, 81–82
in sequence, 83

executing under current user
privileges, 88–89

failure flags for, 85–87
forcing data access to go through,

87–88
initialization code for, 79–80
installing, 281–282
listing of, 88–90
viewing source code for, 91–92

Packages submenu, 269
page1 procedure, 311
page2 procedure, 310–311
pages, passing data between, 308–310
PARAM1 parameter, 266
parameter-listing table, 263
parameters

accepting multiple sets in functions,
89–90

OUT, passing large or complex
collections as, 287–288

passing
collections as, 223–224
between PL/SQL and Java, 328–330

for procedures
passing by name, 74–75
setting default values, 75–76

returning collection as, 224–225
utPLSQL, reconfiguring, 381–384

PARSE function, 180
passing NULL values, 181
password attribute, 389
PATH variable, 390
pattern parameter, 151
patterns, within strings

determining position of, 148–149
finding, 148–149
finding and replacing, 151–153

PAY_CODE parameter, 75
performance, 281–290

identifying bottlenecks, 283–284

improving initial execution running
time, 290

installing DBMS_PROFILER,
281–282

creating profiler tables and sequence
objects, 282

installing packages, 281–282
optimizing computationally

intensive code, 288–289
passing large or complex collections

as OUT parameters, 287–288
speeding up read/write loops,

285–287
PERFORMANCE category, 213
PL/SQL (Procedural

Language/Structured Query
Language), 345–359
accessing from Groovy, 358–359
accessing from Jython, 355–358

Django web framework, 357–358
zxJDBC API, 357

accessing procedures with HTTP,
350–355

accessing stored functions from
JDBC, 348–350

accessing stored procedures via
JDBC, 345–348

calling Java stored procedures from,
326–328

collections and records, 215–232
checking whether elements exist,

228–229
counting members in collections,

226–227
creating and accessing complex

collections, 220–223
creating and accessing hash array

collections, 219–220
creating and accessing indexed

tables, 216–217
creating and accessing record

collections, 218–219
creating simple records, 217
deleting records from collections,

227–228
increasing size of collections,

229–230
navigating collections, 230–231
passing collections as parameters,

223–224

 INDEX

404

PL/SQL, collections and records (cont.)
returning collection as parameters,

224–225
trimming collections, 232
varray, 215–216

displaying compiler warnings,
211–213

executing dynamic blocks of, 171
packages, embedding Java class

into, 336–338
passing data objects to Java,

334–336
passing parameters between Java

and, 328–330
using on Web, 291–318

creating common sets of HTML
page generation procedures,
293–295

creating input forms, 295–299
creating input forms with AJAX,

315–318
creating sortable web reports,

305–307
creating web-based reports using

PL/SQL procedures, 299–302
creating web form dropdown lists

from database queries, 303–305
displaying data from tables, 302–303
generating JavaScript via PL/SQL,

311–313
generating XML output, 314–315
passing data between web pages,

308–310
running PL/SQL procedure on Web,

291–292
viewing errors for debugging web

apps, 310–311
writing and executing code, 253–256

PLS_INTEGER datatype, converting
numbers to, 131–132

PLSQL_CODE_TYPE=NATIVE clause,
289

PlsqlDatabase directive, 292
PlsqlDatabaseConnectString

statement, 292
PlsqlDatabasePassword directive,

292–293
PlsqlDatabaseUsername statement, 292
PLSQL_WARNINGS parameter,

212–213
POPULATE_HIRE_DATE trigger, 112

position argument, 151
position, of patterns within strings,

148–149
POST method, 301
PRAGMA

AUTONOMOUS_TRANSACTION
statement, 38, 40

PRAGMA declaration, 206
PRECEDES clause, 112
prepareCall() method, 347
prepareStatement method, 321
print attribute, 389
print statement, 359
PRIOR method, 231
privileged database connections,

creating, 247–249
PROC1 procedure, 288
PROC2 procedure, 288
Procedural Language/Structured Query

Language. See PL/SQL
Procedure option, 266
PROCEDURE type, 92
procedure_name.variable solution, 19
procedures

creating
functions within, 73–74
public name for, 82–83
stored, 69–71

executing stored, 71–73
granting creation and execution of,

80–81
listing of, 88–90
passing parameters by name, 74–75
setting default parameter values,

75–76
viewing source code for, 91–92

Procedures submenu, 265
process procedure, 311
PROCESS_EMPLOYEE_TIME package,

81, 87, 269
PROCESS_EMP_PAYCHECK procedure,

75
profiler tables, creating, 282
profload.sql script, 281
PROGRAM_ACTION parameter, 244
PROGRAM_ERROR exception, 190
PROGRAM_NAME parameter, 244
PROGRAM_TYPE parameter, 244
<project> tag, 388
<property> tag, 388–389
PROXY_USER parameter, 28

 INDEX

405

PROXY_USERID parameter, 30
prvtmail.plb script, 103
public names

for functions, 82–83
for packages, 82–83
for procedures, 82–83

PUB_SYNONYM_NAME identifier, 83
PUT_LINE procedure, 8

 Q

Q flag, 290
QTR_HOUR variable, 67
queries

database, creating web form
dropdown lists from, 303–305

executing functions from, 67
multiple row, executing, 159–161
single row, executing, 155–158

 R

RAISE keyword, 196
RAISE statement, 196
RAISE_APPLICATION_ERROR

procedure, 200–202
RAISE_APPLICATION_EXCEPTION

procedure, 201–202
raising exceptions

and continuing processing, 204–205
programmer-defined, 194–196
user-defined without handler,

200–202
RDBMS/ADMIN directory, 281
read/write loops, speeding up, 285–287
rec_found variable, 301
REC_LIST variable, 288
RECORD structure, 217
RECORD type, 32
records

PL/SQL, 215–232
checking whether elements exist,

228–229
counting members in collections,

226–227
creating and accessing complex

collections, 220–223
creating and accessing hash array

collections, 219–220

creating and accessing indexed
tables, 216–217

creating and accessing record
collections, 218–219

creating simple records, 217
deleting records from collections,

227–228
increasing size of collections,

229–230
navigating collections, 230–231
passing collections as parameters,

223–224
returning collection as parameters,

224–225
trimming collections, 232
varray, 215–216

returning data from dynamic
queries into, 170–171

RECS structure, 222
RECS(I).MGR = MGR_RECS(I);

statement, 222
rec_type record structure, 217
REF CURSOR variable, 160–161
referencing blocks of code, 9–10
REFERENCING clause, 100
REFERENCING NEW AS NEW clause,

100
REFRESH procedure, 238
REGEXP_COUNT function, 149
REGEXP_INSTR function, 150–151
REGEXP_REPLACE function,

151–153
remote data sources, synchronizing

data with, 238–240
replacing patterns within strings,

151–153
reports, web-based, 299–302
RESOLVE command, 323
resolve option, 322, 324
resolver option, 324
results, 29–30
results, formatting of, 29–30
RETURN clause, 65, 71
RETURN statement, 65
RETURNING clause, 32, 35
return_option parameter, 151
REUSE SETTINGS clause, 289
REVERSE keyword, in FOR loop,

56–57
ROLLBACK statement, 34–38, 40
ROUND function, 144–146

 INDEX

406

rounding
of dates, 145–146
of numbers, 144–145

<ROW> tag, 315
ROWID pseudocolumn, 41
rows

deleting, 34–35
looping through, 24–25
removing duplicates, 40–41
updating

returned by cursor, 33–34
returned by query, 31–32

variables for entire rows of data,
21–22

<ROWSET> tag, 315
ROWTYPE_MISMATCH exception, 190
RPAD function, 29–30, 33
rpt procedure, 301, 307
RTRIM(<string>) function, 30
RULE_NAME parameter, 244
Run Log window, 264
Run option, 268, 272
Run PL/SQL window, 264, 268, 272
Run Statement toolbar button, 258, 269
Run toolbar button, 273
runtime

altering tables at, 174–175
creating tables at, 173–174

 S

SALARY value, 96
Save Snippet pane, 260
SAVEPOINT command, 36
Scheduler utility, Oracle, 69
scheduling job chains, 240–245
SCHEMA parameter, 92
SCHEMA.STORED_PROGRAM schema,

83
<SCRIPT> tag, 312–313, 317
scripts

creating and executing, 256–258
executing, 4–5
storing code in, 3–4

SECOND expression, 141
SECOND unit, 147
seconds, adding to date value, 140–141
SECURE category, 213
Select Connection dialog box, 252
SELECT INTO statement, 16, 20, 38, 191

SELECT list, 158
SELECT statement, 16–17, 19, 24, 33, 57,

190, 277, 302, 305
<SELECT> tag, 298, 305
select_employees file, 256
SELECT.INTO statement, 14, 17, 20
selector, 49
SELF_IS_NULL exception, 190
SEND_EMAIL procedure, 101
sendMail procedure, 339
sequence objects, creating, 282
SERSSION_USER parameter, 28
SERVERERROR event, 109
SERVICE_NAME parameter, 31
session information, obtaining, 25–29
SESSIONID parameter, 28
SESSION_USERID parameter, 28
SET DEFINE command, 13–14
SET DEFINE OFF command, 12–13
SET ESCAPE command, 12
SET LONG buffersize command, 92
SET SERVEROUT ON command, 373
SET SERVEROUTPUT ON command, 4,

8
SET TRANSACTION statement, 37–38
setDouble() method, 350
SetHandler directive, 292
setInt(1, emp_id) method, 347
setPrefix() procedure, 381–382
setreporter option, 384
settings.py file, 358
setXXX() methods, 347
SHORT value, 126
SHOW ERRORS command, 344
show_row procedure, 301
SHUTDOWN trigger, 109
single row

executing queries, 155–158
retrieving, using cursor, 16–18

Smart Data tab, 278
SMTP_OUT_SERVER parameter, 103
Snippets option, View menu, 259
Snippets pane, 259–260
sortable web reports, 305–307
sort_order parameter, 307
source code, viewing

for functions, 91–92
for packages, 91–92
for procedures, 91–92

source_text parameter, 151

 INDEX

407

SQL basics, 15–41
deleting rows, returned by cursor,

34–35
ensuring data is unchanged during

query sequence, 37–38
executing transactions, 35–40
formatting results, 29–30
looping through rows from query,

24–25
obtaining session information,

25–29
qualifying column names, 18–20
qualifying variable names, 18–20
removing duplicate rows, 40–41
retrieving single row, using cursor,

16–18
updating rows

returned by cursor, 33–34
returned by query, 31–32

variables
for entire row of data, 21–22
for multiple records of data, 22–24
that match column types, 20–21

SQL History window, 255
SQL injection attacks, 184–186
<sql> tag, 389
SQLCODE function, 197–199, 207
sqldeveloper directory, 261
SQLERRM function, 198–199
Sql.newInstance method, 359
SQL*Plus &salary variable, 183
SQL*Plus script, 45, 48
SQL*Plus utility

changing substitution variable
character, 14

displaying results in, 6–8
executing blocks of code in, 2–3
executing stored procedure, 71–73
executing stored script, 4–5
ignoring substitution variables,

12–13
referring to variables from nested

blocks, 11
storing code in script, 3–4
user input, accepting from

keyboard, 5–6
squared function, 89
SRC property, 312
STARTUP trigger, 109
STATEMENTID parameter, 28

statements
DELETE, 168–170
INSERT, 161
update, 164–168

STD vlaue, 126
STEP clause, 57
STORAGE_ERROR exception, 190
stored code, debugging, 276–278
stored PL/SQL code, testing without

unit tests, 361–363
Stored Procedure Wizard, 267
stored procedures

creating, 265–268
exposing Java class as, 325
Java

calling from PL/SQL, 326–328
executing, 325–326

storing code, in scripts, 3–4
strings

concatenating, 133–134
converting to

dates, 120–122
numbers, 119–120
timestamps, 127–128

pattern within
determining position of, 148–149
finding, 148–149
finding and replacing, 151–153

subexpression parameter, 151
Submit button, 307
submit routine, 297
SUBSCRIPT_BEYOND_COUNT

exception, 191
substitution variables, accepting user

input for, 258–259
sync_hr_data procedure, 284–285
sync_hr_data program, 284, 286
SYS_CONTEXT function, 25–26, 28
SYSDATE value, 95, 111
SYSDBA connection type, 248
SYSDBA privilege, 290
SYS_INVALID_ROWID exception, 191
system events, triggers on, 107
SYSTEM schema, 365
SYSTIMESTAMP value, 147

 T

T flag, 290
Table Editor, 250

 INDEX

408

TABLE OF clause, 218
TABLE statement, 38
<TABLE> tag, 303
TABLE type, 92
tables

altering at runtime, 174–175
creating at runtime, 173–174
displaying data from, 302–303
obtaining information about,

249–251
that include specific column values,

175–179
tasks, automating, 233–245

e-mailing output from scheduled
jobs, 234–235

refreshing materialized view on
timed intervals, 236–238

scheduling job chains, 240–245
scheduling recurring jobs, 233–234
synchronizing data with remote

data sources, 238–240
using e-mail for job status

notification, 235
TERMINAL parameter, 28
test suites, utPLSQL

building, 373–374
running, 374–381

testing units, with utPLSQL, 361–390
automating unit tests for PL/SQL

and Java stored procedures
using Ant, 385–390

building utPLSQL test packages,
365–367

building utPLSQL test suites,
373–374

installing utPLSQL unit testing
framework, 363–364

reconfiguring utPLSQL parameters,
381–384

redirecting upPLSQL test results to
files, 384–385

running utPLSQL test suites,
374–381

running utPLSQL tests, 369–373
testing stored PL/SQL code without

unit tests, 361–363
writing utPLSQL unit test

procedures, 367–369
<TEXTAREA> tag, 299
THEN clause, 48, 98
throws clause, 348

throws SQLException clause, 348
time zones, associating with date,

147–148
timed intervals, refreshing materialized

view on, 236–238
TIMEOUT_ON_RESOURCE exception,

191
TIMESTAMP datatype, 127–128,

140–141, 147–148
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 127–128, 148
TIMESTAMP WITH TIME ZONE

datatype, 147–148
timestamps

converting strings to, 127–128
and milliseconds, 146–147

TO_CHAR function, 123–125, 128, 130
TO_DATE function, 121–122, 128
TO_NUMBER function, 119–120,

130–131
Tools drop-down menu, 254
TOO_MANY_ROWS exception, 17–18,

191
TO_TIMESTAMP function, 127–128
TO_TIMESTAMP_TZ function, 128
tracing origin of exceptions,

207–210
transactions, executing, 35–40
TRANSLATE function, 170
trapping exceptions, 187–192
Trigger Editor, 274
TRIGGER type, 92
triggers, 93–117

altering functionality of
applications, 101–102

automatically generating column
values, 93–94

creating, 272–275
disabled state for, 115–117
and input data

scrubbing, 104–105
validating, 103–104

Java database, creating, 332–334
making view updatable, 98–101
on multiple events, 113–115
replacing column value format,

105–107
responding to update of specific

table column, 97–98
on schema-related event, 109–111
syncing related values, 95–96

 INDEX

409

on system event, 107
two on same event, 111–112

Triggers tab, Oracle SQL Developer,
250–251

TRIM method, 170, 232
trimming collections, 232
TRUNC function, 142–143
try-catch block, 347
<tstamp/> tag, 388
Type column, parameter-listing table,

262
type conversion, 119–132

ANSI-compliant conversions,
129–131

dates, to strings, 124–126
numbers

to PLS_INTEGER, 131–132
to strings, 123–124

strings
to dates, 120–122
to numbers, 119–120
to timestamps, 127–128

TYPE statement, 217–218, 220, 223

 U

u flag, 340–341
unit testing, with utPLSQL, 361–390

automating unit tests for PL/SQL
and Java stored procedures
using Ant, 385–390

building utPLSQL test packages,
365–367

building utPLSQL test suites,
373–374

installing utPLSQL unit testing
framework, 363–364

reconfiguring utPLSQL parameters,
381–384

redirecting upPLSQL test results to
files, 384–385

running utPLSQL test suites,
374–381

running utPLSQL tests, 369–373
testing stored PL/SQL code without

unit tests, 361–363
writing utPLSQL unit test

procedures, 367–369
unknown exceptions, catching, 192–194
UPDATE event, 106

UPDATE ROW statement, 32
UPDATE statement, 31–32, 35, 71, 96,

99, 152–153, 175, 285
update statements, writing, 164–168
UPDATE trigger, 94, 107
UPDATE.SET ROW syntax, 32
UPDATING conditional predicate, 98
updating rows, 26–34

returned by cursor, 33–34
returned by query, 31–32

url attribute, 389
urls.py file, 357
user input

accepting for substitution variables,
258–259

accepting from keyboard, 5–7
user option, 322
USER_ERRORS table, 323, 343–344
userid attribute, 389
USER_OBJECTS table, 90–91, 288
USER_PROCEDURES view, 89
USER_RECORDS table, 185
UserSnippets.xml file, 261
USER_TAB_COLUMNS view, 178
USING clause, 158, 161, 164, 168,

173–174, 181
utAssert package, 369
utAssert.eq assertion, 368
utAssert.eqcoll assertion, 369
utAssert.eqcollapi assertion, 369
utAssert.eqfile assertion, 369
utAssert.eqoutput assertion, 369
utAssert.eqpipe assertion, 369
utAssert.eqquery assertion, 369
utAssert.eqQuery procedure, 368
utAssert.eqqueryvalue assertion, 369
utAssert.eq_refc_query assertion, 368
utAssert.eq_refc_table assertion, 368
utAssert.eqtabcount assertion, 369
utAssert.eqtable assertion, 369
utAssert.isnotnull assertion, 369
utAssert.isnull procedure, 368–369
utAssert.objexists assertion, 369
utAssert.objnotexists assertion, 369
utAssert.previous_failed assertion, 369
utAssert.previous_passed assertion, 369
utAssert.this assertion, 369
utAssert.throws assertion, 369
ut_calc_quarter_hour procedure, 367
ut_calc_quarter_hour.pkb file, 365

 INDEX

410

ut_calc_quarter_hour.pks file, 365
utConfig package, 381–382, 386
utConfig.autocompile option, 382
utConfig.autocompiling option, 383
utConfig.dateformat option, 383
utConfig.delimiter option, 383
utConfig.dir option, 383
utConfig.filedir option, 383
utConfig.fileextension option, 383
utConfig.fileinfo option, 384
utConfig.getreporter option, 383
utConfig.includeprogname option, 385
utConfig.prefix option, 383
utConfig.registering option, 383
utConfig.registertest option, 382
utConfig.setdateformat option, 382
utConfig.setdelimiter option, 382
utConfig.setdir option, 382
utConfig.setfiledir option, 382
utConfig.setfiledir() procedure, 385
utConfig.setfileextension option, 382
utConfig.setfileinfo option, 382
utConfig.setincludeprogname option,

382
utConfig.setprefix option, 382
utConfig.setPrefix() procedure, 381
utConfig.setreporter() procedure, 382,

385
utConfig.settester option, 382
utConfig.setuserprefix option, 382
utConfig.showconfig option, 383
utConfig.showfailuresonly option, 382
utConfig.showingfailuresonly option,

383
utConfig.tester option, 383
utConfig.userprefix option, 383
ut_factorial package, 367
ut_factorial procedure, 367–368
ut_i_do.sql script, 364
UTL_HTTP package, 354
UTL_MAIL package, 103
UTL_MAIL.SEND procedure, 234–235
utlmail.sql script, 103
utPackage.add procedure, 373, 380
utPLSQL framework, 361, 363–364, 366,

373, 381, 384
utPLSQL package, 364, 367–368
utPLSQL statement, 367

utPLSQL, unit testing with, 361–390
automating unit tests for PL/SQL

and Java stored procedures
using Ant, 385–390

building utPLSQL test packages,
365–367

building utPLSQL test suites,
373–374

installing utPLSQL unit testing
framework, 363–364

reconfiguring utPLSQL parameters,
381–384

redirecting upPLSQL test results to
files, 384–385

running utPLSQL test suites,
374–381

running utPLSQL tests, 369–373
testing stored PL/SQL code without

unit tests, 361–363
writing utPLSQL unit test

procedures, 367–369
utPLSQL.test procedure, 370, 373
utPLSQL.testSuite procedure, 374, 380
ut_setup procedure, 365–367
utsuite.add command, 373
utSuite.add routine, 373
ut_teardown procedure, 365–367

 V

value attribute, 388
VALUE_ERROR exception, 191
value_one variable, 43
value_two variable, 43
var1 parameter, 310
var2 variable, 310
VARCHAR type, 180
VARCHAR2 datatype, 26, 119–120, 127,

149, 152, 266, 330, 332
VARCHAR2 field, 119
VARCHAR2 format, 120
VARCHAR2 type, 7, 179
VARCHAR2(10) type, 22
VARCHAR2(3) data type, 216
variables

changing substitution variable
character, 12–14

creating to match database column
type, 14

 INDEX

411

disabling variable substitution,
12–13

for entire row of data, 21–22
escaping variable references, 12
for multiple records of data, 22–24
names, qualifying, 18–20
referring to from nested blocks of

code, 10
substitution, accepting user input

for, 258–259
types, that match column types,

20–21
varray, 215–216
varray element, 191
vdates variable, 226, 228
VERIFY_EMP_SALARY trigger, 112
View menu, 259
views.py file, 357

 W

web frameworks, Django, 357–358
Web, using PL/SQL on, 291–318

common sets of HTML page
generation procedures,
293–295

displaying data from tables,
302–303

generating JavaScript via PL/SQL,
311–313

generating XML output, 314–315
input forms, 295–299, 315–318
passing data between web pages,

308–310
running PL/SQL procedure on Web,

291–292
sortable web reports, 305–307

viewing errors for debugging web
apps, 310–311

web-based reports using PL/SQL
procedures, 299–302

web form dropdown lists from
database queries, 303–305

WHEN clause, 48–49, 54, 189, 192, 273
WHEN OTHERS THEN clause, 193
WHEN statement, 50
WHEN.THEN clause, 189, 196
WHERE clause, 6, 156, 159, 163, 181,

240, 303
WHERE CURRENT OF clause, 33–35
WHILE loop, 52–53, 321
WHILE statement, 52
WITH LOCAL TIME ZONE option, 148
WITH READ ONLY clause, 100
WITH TIME ZONE option, 148

 X

XHTML (Extensible Hypertext Markup
Language), 354

XML, generating output, 314–315
xml package, 317
xml procedure, 315, 317–318

 Y

YEAR unit, 147
years, adding to date value, 137–138

 Z

ZERO_DIVIDE exception, 191
ZxJDBC API, 357

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	PL/SQL Fundamentals
	1-1. Creating a Block of Code
	Problem
	Solution
	How It Works

	1-2. Executing a Block of Code in SQL*Plus
	Problem
	Solution
	How It Works

	1-3. Storing Code in a Script
	Problem
	Solution
	How It Works

	1-4. Executing a Stored Script
	Problem
	Solution
	How It Works

	1-5. Accepting User Input from the Keyboard
	Problem
	Solution
	How It Works

	1-6. Displaying Results in SQL*Plus
	Problem
	Solution
	How It Works

	1-7. Commenting Your Code
	Problem
	Solution
	How It Works

	1-8. Referencing a Block of Code
	Problem
	Solution
	How It Works

	1-9. Referring to Variables from Nested Blocks
	Problem
	Solution
	How It Works

	1-10. Ignoring Substitution Variables
	Problem
	Solution #1
	Solution #2
	How It Works

	1-11. Changing the Substitution Variable Character
	Problem
	Solution
	How It Works

	1-12. Creating a Variable to Match a Database Column Type
	Problem
	Solution
	How It Works

	Essential SQL
	2-1. Retrieving a Single Row from the Database
	Problem
	Solution #1
	Solution #2
	How It Works
	Comments on Solution #1
	Comments on Solution #2

	2-2. Qualifying Column and Variable Names
	Problem
	Solution
	How It Works

	2-3. Declaring Variable Types That Match Column Types
	Problem
	Solution
	How It Works

	2-4. Returning Queried Data into a PL/SQL Record
	Problem
	Solution
	How It Works

	2-5. Creating Your Own Records to Receive Query Results
	Problem
	Solution
	How It Works

	2-6. Looping Through Rows from a Query
	Problem
	Solution #1
	Solution #2
	How It Works

	2-7. Obtaining Environment and Session Information
	Problem
	Solution
	How It Works

	2-8. Formatting Query Results
	Problem
	Solution
	How It Works

	2-9. Updating Rows Returned by a Query
	Problem
	Solution
	How It Works

	2-10. Updating Rows Returned by a Cursor
	Problem
	Solution
	How It Works

	2-11. Deleting Rows Returned by a Cursor
	Problem
	Solution
	How It Works

	2-12. Performing a Transaction
	Problem
	Solution
	How It Works

	2-13. Ensuring That Multiple Queries “See” the Same Data
	Problem
	Solution
	How It Works

	2-14. Executing One Transaction from Within Another
	Problem
	Solution
	How It Works

	2-15. Finding and Removing Duplicate Table Rows
	Problem
	Solution
	How It Works

	Looping and Logic
	3-1. Choosing When to Execute Code
	Problem
	Solution
	How It Works

	3-2. Choosing Between Two Mutually Exclusive Conditions
	Problem
	Solution
	How It Works

	3-3. Evaluating Multiple Mutually Exclusive Conditions
	Problem
	Solution #1
	Solution #2
	How It Works

	3-4. Driving from an Expression Having Multiple Outcomes
	Problem
	Solution
	How It Works

	3-5. Looping Until a Specified Condition Is Met
	Problem
	Solution
	How It Works

	3-6. Iterating Cursor Results Until All Rows Have Been Returned
	Problem
	Solution
	How It Works

	3-7. Iterating Until a Condition Evaluates to FALSE
	Problem
	Solution
	How It Works

	3-8. Bypassing the Current Loop Iteration
	Problem
	Solution
	How It Works

	3-9. Iterating a Fixed Number of Times
	Problem
	Solution
	How It Works

	3-10. Iterating Backward Through a Range
	Problem
	Solution
	How It Works

	3-11. Iterating in Increments Other Than One
	Problem
	Solution
	How It Works

	3-12. Stepping Through a Loop Based on Odd-Numbered Increments
	Problem
	Solution
	How It Works

	3-13. Exiting an Outer Loop Prematurely
	Problem
	Solution
	How It Works

	3-14. Jumping to a Designated Location in Code
	Problem
	Solution
	How It Works

	Functions, Packages, and Procedures
	4-1. Creating a Stored Function
	Problem
	Solution
	How It Works

	4-2. Executing a Stored Function from a Query
	Problem
	Solution
	How It Works

	4-3. Optimizing a Function That Will Always Return the Same Result for a Given Input
	Problem
	Solution
	How It Works

	4-4. Creating a Stored Procedure
	Problem
	Solution
	How It Works

	4-5. Executing a Stored Procedure
	Problem
	Solution
	How It Works

	4-6. Creating Functions Within a Procedure or Code Block
	Problem
	Solution
	How It Works

	4-7. Passing Parameters by Name
	Problem
	Solution
	How It Works

	4-8. Setting Default Parameter Values
	Problem
	Solution
	How It Works

	4-9. Collecting Related Routines into a Single Unit
	Problem
	Solution
	How It Works

	4-10. Writing Initialization Code for a Package
	Problem
	Solution
	How It Works

	4-11. Granting the Ability to Create and Execute Stored Programs
	Problem
	Solution
	How It Works

	4-12. Executing Packaged Procedures and Functions
	Problem
	Solution
	How It Works

	4-13. Creating a Public Name for a Stored Program
	Problem
	Solution
	How It Works

	4-14. Executing Package Programs in Sequence
	Problem
	Solution
	How It Works

	4-15. Implementing a Failure Flag
	Problem
	Solution
	How It Works

	4-16. Forcing Data Access to Go Through Packages
	Problem
	Solution
	How It Works

	4-17. Executing Stored Code Under Your Own Privilege Set
	Problem
	Solution
	How It Works

	4-18. Accepting Multiple Parameter Sets in One Function
	Problem
	Solution
	How It Works

	4-19. Listing the Functions, Procedures, and Packages in a Schema
	Problem
	Solution
	How It Works

	4-20. Viewing Source Code for Stored Programs
	Problem
	Solution
	How It Works

	Triggers
	5-1. Automatically Generating Column Values
	Problem
	Solution
	How It Works

	5-2. Keeping Related Values in Sync
	Problem
	Solution
	How It Works

	5-3. Responding to an Update of a Specific Table Column
	Problem
	Solution
	How It Works

	5-4. Making a View Updatable
	Problem
	Solution
	How It Works

	5-5. Altering the Functionality of Applications
	Problem
	Solution
	How It Works

	5-6. Validating Input Data
	Problem
	Solution
	How It Works

	5-7. Scrubbing Input Data
	Problem
	Solution
	How It Works

	5-8. Replacing a Column’s Value
	Problem
	Solution
	How It Works

	5-9. Triggering on a System Event
	Problem
	Solution
	How It Works

	5-10. Triggering on a Schema-Related Event
	Problem
	Solution
	How It Works

	5-11. Firing Two Triggers on the Same Event
	Problem
	Solution
	How It Works

	5-12. Creating a Trigger That Fires on Multiple Events
	Problem
	Solution
	How It Works

	5-13. Creating a Trigger in a Disabled State
	Problem
	Solution
	How It Works

	Type Conversion
	6-1. Converting a String to a Number
	Problem
	Solution
	How It Works

	6-2. Converting a String to a Date
	Problem
	Solution
	How It Works

	6-3. Converting a Number to a String
	Problem
	Solution
	How It Works

	6-4. Converting a Date to a String
	Problem
	Solution
	How It Works

	6-5. Converting Strings to Timestamps
	Problem
	Solution
	How It Works

	6-6. Writing ANSI-Compliant Conversions
	Problem
	Solution
	How It Works

	6-7. Implicitly Converting Between PLS_INTEGER and NUMBER
	Problem
	Solution
	How It Works

	Numbers, Strings, and Dates
	7-1. Concatenating Strings
	Problem
	Solution
	How It Works

	7-2. Adding Some Number of Days to a Date
	Problem
	Solution
	How It Works

	7-3. Adding a Number of Months to a Date
	Problem
	Solution
	How It Works

	7-4. Adding Years to a Date
	Problem
	Solution
	How It Works

	7-5. Determining the Interval Between Two Dates
	Problem
	Solution
	How It Works

	7-6. Adding Hours, Minutes, Seconds, or Days to a Given Date
	Problem
	Solution
	How It Works

	7-7. Returning the First Day of a Given Month
	Problem
	Solution
	How It Works

	7-8. Returning the Last Day of a Given Month
	Problem
	Solution
	How It Works

	7-9. Rounding a Number
	Problem
	Solution
	How It Works

	7-10. Rounding a Datetime Value
	Problem
	Solution
	How It Works

	7-11. Tracking Time to a Millisecond
	Problem
	Solution
	How It Works

	7-12. Associating a Time Zone with a Date and Time
	Problem
	Solution
	How It Works

	7-13. Finding a Pattern Within a String
	Problem
	Solution
	How It Works

	7-14. Determining the Position of a Pattern Within a String
	Problem
	Solution
	How It Works

	7-15. Finding and Replacing Text Within a String
	Problem
	Solution
	How It Works

	Dynamic SQL
	8-1. Executing a Single Row Query That Is Unknown at Compile Time
	Problem
	Solution #1
	Solution #2
	How It Works #1
	How It Works #2

	8-2. Executing a Multiple Row Query That Is Unknown at Compile Time
	Problem
	Solution #1
	Solution #2
	How It Works

	8-3. Writing a Dynamic INSERT Statement
	Problem
	Solution
	Solution #2
	How It Works

	8-4. Writing a Dynamic Update Statement
	Problem
	Solution
	How It Works

	8-5. Writing a Dynamic Delete Statement
	Problem
	Solution
	How It Works

	8-6. Returning Data from a Dynamic Query into a Record
	Problem
	Solution
	How It Works

	8-7. Executing a Dynamic Block of PL/SQL
	Problem
	Solution #1
	Solution #2
	How It Works

	8-8. Creating a Table at Runtime
	Problem
	Solution
	How It Works

	8-9. Altering a Table at Runtime
	Problem
	Solution
	How It Works

	8-10. Finding All Tables That Include a Specific Column Value
	Problem
	Solution
	How It Works

	8-11 Storing Dynamic SQL in Large Objects
	Problem
	Solution #1
	Solution #2
	How It Works

	8-12. Passing NULL Values to Dynamic SQL
	Problem
	Solution
	How It Works

	8-13. Switching Between DBMS_SQL and Native Dynamic SQL
	Problem
	Solution
	How It Works

	8-14. Guarding Against SQL Injection Attacks
	Problem
	Solution
	How It Works

	Exceptions
	9-1. Trapping an Exception
	Problem
	Solution
	How It Works

	9-2. Catching Unknown Exceptions
	Problem
	Solution
	How It Works

	9-3. Creating and Raising Named Programmer-Defined Exceptions
	Problem
	Solution
	How It Works

	9-4. Determining Which Error Occurred Inside the OTHERS Handler
	Problem
	Solution
	How It Works

	9-5. Raising User-Defined Exceptions Without an Exception Handler
	Problem
	Solution
	How It Works

	9-6. Redirecting Control After an Exception Is Raised
	Problem
	Solution
	How It Works

	9-7. Raising Exceptions and Continuing Processing
	Problem
	Solution
	How It Works

	9-8. Associating Error Numbers with Exceptions That Have No Name
	Problem
	Solution
	How It Works

	9-9. Tracing an Exception to Its Origin
	Problem
	Solution
	How It Works

	9-10. Displaying PL/SQL Compiler Warnings
	Problem
	Solution
	How It Works

	PL/SQL Collections and Records
	10-1. Creating and Accessing a VARRAY
	Problem
	Solution
	How It Works

	10-2. Creating and Accessing an Indexed Table
	Problem
	Solution
	How It Works

	10-3. Creating Simple Records
	Problem
	Solution
	How It Works

	10-4. Creating and Accessing Record Collections
	Problem
	Solution
	How It Works

	10-5. Creating and Accessing Hash Array Collections
	Problem
	Solution
	How It Works

	10-6. Creating and Accessing Complex Collections
	Problem
	Solution
	How It Works

	10-7. Passing a Collection As a Parameter
	Problem
	Solution
	How It Works

	10-8. Returning a Collection As a Parameter
	Problem
	Solution
	How It Works

	10-9. Counting the Members in a Collection
	Problem
	Solution
	How It Works

	10-10. Deleting a Record from a Collection
	Problem
	Solution
	How It Works

	10-11. Checking Whether an Element Exists
	Problem
	Solution
	How It Works

	10-12. Increasing the Size of a Collection
	Problem
	Solution
	How It Works

	10-13. Navigating Collections
	Problem
	Solution
	How It Works

	10-14. Trimming a Collection
	Problem
	Solution
	How It Works

	Automating Routine Tasks
	11-1. Scheduling Recurring Jobs
	Problem
	Solution
	How It Works

	11-2. E-mailing Output from a Scheduled Job
	Problem
	Solution
	How It Works

	11-3. Using E-mail for Job Status Notification
	Problem
	Solution
	How It Works

	11-4. Refreshing a Materialized View on a Timed Interval
	Problem
	Solution
	How It Works

	11-5. Synchronizing Data with a Remote Data Source
	Problem
	Solution
	How It Works

	11-6. Scheduling a Job Chain
	Problem
	Solution
	How It Works

	Oracle SQL Developer
	12-1. Creating Standard and Privileged Database Connections
	Problem
	Solution
	How It Works

	12-2. Obtaining Information About Tables
	Problem
	Solution
	How It Works

	12-3. Enabling Output to Be Displayed
	Problem
	Solution
	How It Works

	12-4. Writing and Executing PL/SQL
	Problem
	Solution
	How It Works

	12-5. Creating and Executing a Script
	Problem
	Solution
	How It Works

	12-6. Accepting User Input for Substitution Variables
	Problem
	Solution
	How It Works

	12-7. Saving Pieces of Code for Quick Access
	Problem
	Solution
	How It Works

	12-8. Creating a Function
	Problem
	Solution
	How It Works

	12-9. Creating a Stored Procedure
	Problem
	Solution
	How It Works

	12-10. Creating a Package Header and Body
	Problem
	Solution
	How It Works

	12-11. Creating a Trigger
	Problem
	Solution
	How It Works

	12-12. Debugging Stored Code
	Problem
	Solution
	How It Works

	12-13. Compiling Code Within the Navigator
	Problem
	Solution
	How It Works

	Analyzing and Improving Performance
	13-1. Installing DBMS_PROFILER
	Problem
	Solution
	Installing the Packages
	Creating the Profiler Tables and Sequence Object
	How It Works

	13-2. Identifying Bottlenecks
	Problem
	Solution
	How It Works

	13-3. Speeding Up Read/Write Loops
	Problem
	Solution
	How It Works

	13-4. Passing Large or Complex Collections as OUT Parameters
	Problem
	Solution
	How It Works

	13-5. Optimizing Computationally Intensive Code
	Problem
	Solution
	How It Works

	13-6. Improving Initial Execution Running Time
	Problem
	Solution
	How It Works

	Using PL/SQL on the Web
	14-1. Running a PL/SQL Procedure on the Web
	Problem
	Solution
	How It Works

	14-2. Creating a Common Set of HTML Page Generation Procedures
	Problem
	Solution
	How It Works

	14-3 Creating an Input Form
	Problem
	Solution
	How It Works

	14-4. Creating a Web–based Report Using PL/SQL Procedures
	Problem
	Solution
	How It Works

	14-5. Displaying Data from Tables
	Problem
	Solution
	How It Works

	14-6. Creating a Web Form Dropdown List from a Database Query
	Problem
	Solution
	How It Works

	14-7. Creating a Sortable Web Report
	Problem
	Solution
	How It Works

	14-8. Passing Data Between Web Pages
	Problem
	Solution
	How It Works

	14-9. Viewing Errors for Debugging Web Apps
	Problem
	Solution
	Solution #1
	Solution #2
	How It Works Solution #1
	Solution #2

	14-10. Generating JavaScript via PL/SQL
	Problem
	Solution
	How It Works

	14-11. Generating XML Output
	Problem
	Solution
	How It Works

	14-12. Creating an Input Form with AJAX
	Problem
	Solution
	How It Works

	Java in the Database
	15-1. Creating a Java Database Class
	Problem
	Solution
	How It Works

	15-2. Loading a Java Database Class into a Database
	Problem
	Solution #1
	Solution #2
	How It Works

	15-3. Loading a Compiled Java Class Into the Database
	Problem
	Solution
	How It Works

	15-4. Exposing a Java Class As a Stored Procedure
	Problem
	Solution
	How It Works

	15-5. Executing a Java Stored Procedure
	Problem
	Solution
	How It Works

	15-6. Calling a Java Stored Procedure from PL/SQL
	Problem
	Solution
	How It Works

	15-7. Passing Parameters Between PL/SQL and Java
	Problem
	Solution
	How It Works

	15-8. Creating and Calling a Java Database Function
	Problem
	Solution
	How It Works

	15-9. Creating a Java Database Trigger
	Problem
	Solution
	How It Works

	15-10. Passing Data Objects from PL/SQL to Java
	Problem
	Solution
	How It Works

	15-11. Embedding a Java Class Into a PL/SQL Package
	Problem
	Solution
	How It Works

	15-12. Loading Java Libraries Into the Database
	Problem
	Solution
	How It Works

	15-13. Removing a Java Class
	Problem
	Solution
	How It Works

	15-14. Retrieving Database Metadata with Java
	Problem
	Solution
	How It Works

	15-15. Querying the Database to Help Resolve Java Compilation Issues
	Problem
	Solution
	How It Works

	Accessing PL/SQL from JDBC, HTTP, Groovy, and Jython
	16-1. Accessing a PL/SQL Stored Procedure via JDBC
	Problem
	Solution
	How It Works

	16-2. Accessing a PL/SQL Stored Function from JDBC
	Problem
	Solution
	How It Works

	16-3. Accessing PL/SQL Web Procedures with HTTP
	Problem
	Solution
	How It Works

	16-4. Accessing PL/SQL from Jython
	Problem
	Solution #1
	Solution #2
	How It Works
	Using the zxJDBC API to Solve the Problem
	Using Django to Solve the Problem

	16-5. Accessing PL/SQL from Groovy
	Problem
	Solution
	How It Works

	Unit Testing With utPLSQL
	17-1. Testing Stored PL/SQL Code Without Unit Tests
	Problem
	Solution
	How It Works

	17-2. Installing the utPLSQL Unit Testing Framework
	Problem
	Solution
	How It Works

	17-3. Building a utPLSQL Test Package
	Problem
	Solution
	How It Works

	17-4. Writing a utPLSQL Unit Test Procedure
	Problem
	Solution
	How It Works

	17-5. Running a utPLSQL Test
	Problem
	Solution
	How It Works

	17-6. Building a utPLSQL Test Suite
	Problem
	Solution
	How It Works

	17-7. Running a utPLSQL Test Suite
	Problem
	Solution
	How It Works

	17-8. Reconfiguring utPLSQL Parameters
	Problem
	Solution
	How It Works

	17-9. Redirecting utPLSQL Test Results to a File
	Problem
	Solution
	How It Works

	17-10. Automating Unit Tests for PL/SQL and Java Stored Procedures Using Ant
	Problem
	Solution
	How It Works

	Index
	Special Characters
	.
	. A
	. B
	. C
	. D
	. E
	. F
	. G
	. H
	. I
	. J
	. K
	. L
	. N
	. M
	. O
	. P
	. Q
	. R
	. S
	. T
	. U
	. V
	. W . X
	. Y
	Z
	.

